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Abstract

In direct numerical simulation (DNS) of the re-
ceptivity to freestream disturbances and the laminar-
turbulent transition process of hypersonic boundary
layers, it is necessary to consider the effect of the
interaction between the bow shocks and wave fields.
In previous papers, we developed a fifth-order shock-
fitting numerical method and conducted the DNS of
the generation of boundary layer instability waves due
to freestream acoustic disturbances for a 2-D Mach 15
flow over a parabolic leading edge. It was shown that
instability waves developed in hypersonic boundary lay-
ers behind bow shocks contain both the first and sec-
ond mode waves. The use of the high-order.shock fit-
ting scheme makes it possible to accurately simulate
physical bow-shock oscillations and interactions. This
paper extends the previous 2-D work to a 3-D shock-
fitting scheme for the DNS of 3-D hypersonic flows over
blunt cones of arbitrary cross sections and over blunt
wedges. The new 3-D shock-fitting scheme is then used
to study the receptivity of both axisymmetric and 3-D
hypersonic boundary layers to freestream disturbances
in Mach 15 flows over a parabolic cone and a parabolic
wedge. The receptivity characteristics of axisymmet-
ric and planar hypersonic boundary layers over blunt
bodies are compared.

Introduction

The prediction of laminar-turbulent transition in hy-
personic boundary layers is a critical part of the aero-
dynamic design and control of hypersonic vehicles M.
In general, the transition is a result of nonlinear
response of the laminar boundary layers to forcing
disturbances ̂ . In an environment with small initial
disturbances, the path to transition consists of three
stages: 1) receptivity, 2) linear eigenmode growth or
transient growth, and 3) nonlinear breakdown to tur-
bulence.

The receptivity ̂  of boundary layers to disturbances
is the process of converting environmental disturbances
into instability waves in the boundary layers. The
receptivity mechanism provides important initial con-
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ditions in terms of amplitude, frequency, and phase
for the instability waves in the boundary layers. The
past theoretical, experimental, and numerical studies of
boundary-layer receptivity were reviewed by Goldstein
and Hultgren ̂  and by Saric, Reed, and Kerschen ^.
Most theoretical results on incompressible boundary-
layer receptivity have been obtained from the asymp-
totic analysis *-6'. The asymptotic analysis explains how
the long wavelength freestream acoustic disturbances
enter a boundary layer and generate short-wavelength
Tollmien-Schlichting (T-S) waves downstream of the
leading edge. Recently, direct numerical simulation of
the Navier-Stokes equations has become a powerful tool
in the studies of stability and transition'7"9^. Exam-
ples of the DNS studies on the receptivity of low-speed
boundary layers can be found in Refs. [10-17].

For hypersonic flow over blunt bodies, the receptiv-
ity phenomena are more complex than those in low-
speed flow regimes'18'19'. The receptivity and transi-
tion of hypersonic boundary layers over blunt bodies
are altered considerably by the presence of the bow
shocks which are located very close to body surfaces
at hypersonic Mach numbers. For the receptivity to
freestream disturbances, irrespective of the nature of
the freestream disturbance waves, the interaction with
bow shocks always generates all three types of acous-
tic, entropy, and vorticity waves. These transmitted
waves are propagated downstream and interact with the
boundary layers on the body surfaces. At the same
time, boundary layers also generate reflected acous-
tic waves impinging on the shocks from behind which
generates further disturbances to the shocks and wave
fields. Figure 1 shows a schematic of the wave field in-
teractions near a hypersonic leading edge affected by
freestream disturbances. Furthermore, stability and
transition of hypersonic boundary layers are affected by
nose bluntness and by the boundary-layer swallowing of
entropy layers created by bow shocks \-20~22\

Therefore, for the numerical simulation of hypersonic
boundary-layer transition, it is necessary to include the
effect of bow shocks and nose bluntness. High-order
accurate numerical methods are required in the direct
numerical simulation in order to resolve all relevant flow
time and length scales related to the instability waves.
Conventional high-order schemes, however, can only be
used in flow fields without shock waves. Though non-
linear shock capturing schemes, such as the TVD and
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K M ) M ' h < - m r > . h a v e I . , - , - n very successful i n c o m p u t e
a e r o d y n a m i c proper ! i > - s o f h y p e r s o n i c Hows w i t h shock
waves, the shock c a p t u r i n g methods arc o f t e n not accu-
rate enough to accurately compute physical curved bow
shock oscillations and shock interactions w i t h short-
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length-scale instability waves L" J.
In order to simulate hypersonic boundary-layer re-

ceptivity, stability, and transition with strong bow
shocks, we '•24-' developed and validated a set of fifth
and seventh-order shock-fitting schemes for the DNS of
practical hypersonic flows over blunt bodies. The use
of shock-fitting method makes it possible to accurately
compute the physical bow-shock interactions, and the
development of instability waves in the boundary layers.
Subsequently, we '1(' used the new schemes to conduct
DNS studies of the receptivity of a hypersonic boundary
layer to 2-D freestream monochromatic planar acoustic
disturbances for a Mach 15 flow over a parabolic lead-
ing edge. Local parallel linear stability analysis (LST)
of the stability of the hypersonic boundary layer over
the blunt wedge was also conducted ̂  to compare with
DNS results and to identify instability modes obtained
by the DNS studies. Numerical accuracy of the DNS re-
sults for such hypersonic boundary layer receptivity was
evaluated by grid refinement studies and by comparison
with other experimental and theoretical results. These
2-D studies showed that instability waves developed in
the hypersonic boundary layer behind the bow shock
contain both the first and second mode ̂  instabilities.
The size and the strength of the two regions depend on
the frequency of the disturbances. The results also indi-
cated that external disturbances, especially the entropy
and vorticity ones, enter the boundary layer mainly in
the leading edge region to generate instability waves.

The objective of this paper is extend the previous 2-D
high-order shock-fitting schemes in [17,24] to the DNS
of 3-D hypersonic boundary layers over blunt bodies
of arbitrary cross sections. The numerical methods for
spatial discretization of the 3-D full Navier-Stokes equa-
tions are a fifth-order shock-fitting scheme in stream-
wise and wall-normal directions, and a Fourier colloca-
tion method in the periodic spanwise flow direction for
the case of a wedge geometry or in the azimuthal di-
rection for the case of a cone geometry. The spatially
discretized equations are advanced in time using a Low-
Storage Runge-Kutta scheme of Williamson ^27' of up to
the third order. The new 3-D schemes are then used
to study the receptivity of an axisymmetric hypersonic
boundary layer over an axisymmetric parabolic cone.
The disturbances are freestream weak monochromatic
planar acoustic waves. The axisymmetric receptivity re-
sults are compared with the corresponding planar 2-D
results reported in [17]. The new 3-D schemes are also
applied to the receptivity of a 2-D hypersonic boundary
mean flow over a blunt wedge to 3-D oblique free stream
disturbances. For this case, the mean flow is 2-D but
the unsteady flow fields are 3-D.

Equations and Numerical Methods

The governing e q u a t i o n s and n u m e r i c a l m e t h o d s a rc
br ie f ly summerized here. De ta i l s can be found in prev i -
ous papers for 2-D flows [ L 7 . 2 - 1 J . The governing equa-
tions are the unsteady fu l l three-dimensional Navier-
Stokes equations in the conservation-law form:

dl" OF', 8F\j
df dx* Ox* (1)

where superscript "*" represents dimensional variables,
and

pu, p*u'3, e'} (2)

The gas is assumed to be thermally and calorically per-
fect. The viscosity and heat conductivity coefficients
are calculated using the Sutherland's law together with
a constant Prandtl number Pr.

We nondimensionalize the velocities with respect to
the freestream velocity U^, length scales with respect
to a reference length d' given by the body surface equa-
tion, density with respect to p^, pressure with respect
to p£o, temperature with respect to T^, time with re-
spect to d*/U^e, vorticity with respect to U^/d*, en-
tropy with respect to Cp, wave number with respect to
1/d*, etc. The dimensionless flow variables are denoted
by the same dimensional notation but without the su-
perscript "*".

Receptivity Simulations

The numerical simulation for the receptivity of hy-
personic flows over a blunt cone or a blunt wedge is
carried out using the new 3-D fifth-order shock fitting
scheme where the outer grid line is the bow shock. Fig-
ure 2 shows a schematic of the general 3-D shock fitted
grids used for case of flow over a blunt wedge. Shock
fitting grids for hypersonic flow over a blunt cone are
generated similarly. The grids are stretched in both
streamwise and wall-normal directions. The unsteady
bow shock shape and shock oscillations are solved as
part of the computation solutions. Analytical formulas
of the metric coefficients for coordinates transformation
are used to ensure numerical accuracy for the unsteady
coordinate transformation in the simulations.

In the simulations, steady flow solutions are first ob-
tained by advancing the unsteady flow computations
to convergence using the fifth-order computer code. No
disturbances are imposed in the freestream. The steady
shock shape is obtained as a part of the numerical so-
lutions. Subsequently, unsteady viscous flows are com-
puted by imposing a continuous planar acoustic single-
frequency disturbance wave on the steady flow vari-
ables at the freestream side of the bow shock. The
shock/disturbance interactions and generation of T-S
waves in the boundary layer are solved using the non-
linear Rankine-Hugoniot relations at the shock and the
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f u l l Xavier -S tokes equa t ions in the flow f i e l d s . The un-
s teady c a l c u l a t i o n s are ca r r ied out for a b o u t I o to !H)
periods in t ime u n t i l the unsteady .solutions reach a t i m e
periodic state. Finally, the unsteady computat ions are
carried out for additional periods in t ime to perform
FFT on the perturbation field to obtain the Fourier am-
plitudes and phase angles for the perturbations of the
unsteady flow variables in the flow field.

The freestream disturbances are assumed to be weak
monochromatic planar acoustic waves with wave front
oblique to the center line of the body in the x — z plane
at an angle of i}>. The perturbations of flow variables
in the freestream introduced by the freestream acoustic
wave before reaching the bow shock can be written in
the following form:

= k'l z — u>t) (3)

where q'\ represents one of the flow variables, \u' , \v' ,
w' , \p'\, and \p'\. The freestream perturbation ampli-

tudes satisfy the following relations:

|u'|oo = =0,

\P\oo =

where e represents the freestream wave magnitude. The
angle il> is the angle of freestream wave with respect to
the x axis in the x-z plane, where tp — 0 corresponds
to 2-D planar waves. The parameter k is the dimen-
sionless freestream wave number which is related to the
dimensionless circular frequency u by:

w = k (cos 4> + M^1) (4)

The dimensionless frequency F is defined as:

F = (5)

The numerical method has been tested and validated
in [24]. For the current receptivity computations, grid
refinements are used to ensure that both steady and
unsteady solutions are grid independent. In addition,
the direct simulation of the development of instability
waves along the boundary layer is carried out in suc-
cessive computational zones from the leading edge to
downstream. The development of instability waves in
Zone 1 is first computed until the solutions reach a time
periodic state. Having finished the simulation in Zone
1, the simulations in Zone 2 are carried out using the so-
lutions from Zone 1 as boundary conditions at the inlet.
The use of multi-zone approach provides a way to evalu-
ate the magnitudes of possible numerical wave reflection
at the exit boundary. If there is no spurious numerical
reflection at the exit boundary, the solutions from the
two zones in the overlap region are the same. The com-
parison of the results in the overlap region shows that
the wave reflections at the exit boundary for the present
test cases are negligible or are limited to very small am-
plitudes near the exit of Zone 1.

Receptivity of Axisymmetric Hypersonic Flow-

The first case i s t he r e c e p t i v i t y u f a n a x i s y i n m e t r i i '
boundary layer to weak freest ream acous t ic d i s t u r b a n c e
waves for a Mach 15 hypersonic flow past a parabol ic
blunt cone at zero angle of attack. In order to com-
pare the receptivity results of axisymmetric and planar
hypersonic flows, the axisymmetric flow conditions and
the parabolic geometry are chosen to be the same as
those for the planar 2-D cases presented in [17]. Specif-
ically, the body surface is a parabolic cone given by:

* * * 2 , ;* * 2 i*x =az +by -a (6)

where a* , b' , and d* are constants, and d* is used as the
reference length. In the present simulations, the cone
has an axisymmetric shape with a circular cross section
by specifying a* = b* . The flow conditions are

= 5 x 1C 4

7= 1.4
Pr = 0.72
d' = 0.1m
T: = 110.33 A'

Moo = 15

T^ = 192.989 K
T* = 1000 K
R* = 286.94 Nm/kgK
a* =6* =40m- 1

T; = 288 K
H" = 0.17894 x IQ
Nose Radius of Curvature = r* = 0.0125 m
Jfeoo = pl0UZ><Tfr*00 = 6026.55

The body surface is assumed to be a non-slip wall with
an isothermal wall temperature T£,. So far, only one test
case with dimensionless frequency of the disturbance
wave F = 1770 has been computed and is presented in
this paper.

Though the flow is axisymmetric, the acutal com-
putations are obtained for 3-D flow fields without the
axisymmetric assumption. We choose such approach
because the main purpose of our study is the DNS of
general 3-D transient hypersonic flows.' The present
axisymmetric flow computations serve as a first test
case for the new general 3-D code. The results pre-
sented in this paper are obtained using 80 grid points
in the streamwise direction and 60 points in the wall-
normal direction. Since the flow is axisymmetric, only 4
Fourier collocation points are needed in computing the
azimuthal direction. Figure 3 shows the steady solution
for a set of 80 x 60 x 32 computational grid obtained by
the simulation. The axisymmetric steady solutions for
velocity vectors are shown in Fig. 4. The bow shock and
development of boundary layers along the body surface
are shown in this figure. Figure 5 shows the unsteady
instantaneous perturbations of the velocity velocity vec-
tors for the receptivity of the axisymmetric Mach 15
flow over the parabolic cone with zero angle of attack.
Both steady and unsteady bow shocks are captured well
by the methods. Since these steady and unsteady flows
are axisymmetric, we will present the results only in a
computational surface of a fixed azimuthal angle in the
following sections.
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S t o n d y ow Sn ' iu t ions

Figu re 7 shows the con tou r s of > teady ax i symmctnc
flow solutions of Mach numbers, pressure, and entropy
for the Mach 15 flow over the cone. Compared w i t h the
corresponding planar 2-D flow over a parabolic lead-
ing edge ̂ '\ the bow shock in the axisymmetric flow is
located much closer to the body surface because of the
3-D effect. Consequently, the Mach numbers behind the
shock for the axisymmetric case are larger than those
for the corresponding planar case. The high Mach num-
bers in general lead to more stable boundary layers at
hypersonic flow regime. Meanwhile, the entropy con-
tours show an entropy layer which is generated by the
bow shock. The swallowing of the entropy layer by the
boundary layer has been shown to play an important
role in the stability and transition of the boundary layer
downstream ^20'. The entropy layer for the axisymmet-
ric case is closer to the body surface than the planar
case.

More quantitative pictures of the axisymmetric mean
flow over the cone are shown in Fig. 8 for the pres-
sure, temperature, and velocities profiles along a range
of wall-normal grid lines. The x coordinates of the in-
tersecting points of these wall-normal grid lines on the
surface are listed in Table 1. Similar to the planar case,
the axisymmetric flow has a favorable pressure gradi-
ent along the body surface. The pressure difference be-
tween those behind the shock and on the body surface is
shown in Fig. 6. The axisymmetric flow has much more
uniform pressure across the boundary layers at down-
stream locations. In addition, the tangential velocity
( M J ) profiles along the wall-normal direction are much
fuller than the corresponding planar flow results. The
normal velocity components (un) are much smaller than
the planar results. In the planar case, un is about 10%
of the tangential velocity ut due to curvature effect as
compared to less than 5% for the axisymmetric flow.

Table 1. x coordinates of wall-normal grid lines.
Index i
25
35
45
55
65
75

x, Coordinates
-0.756873
-0.557069
-0.297524
0.0376505
0.465454
1.00326

For compressible boundary layers over flat plates,
Lin and Lees '•28' showed that a generalized inflection
point for inviscid instability corresponds to the zeros
of d(pdu/dyn)/dy. For the planar 2-D hypersonic flow
over a parabola, there is a generalized inflection point
in the boundary layer '-17'. This generalized inflection
point moves away from the wall as x increases. Figure
9 shows the variation of axisymmetric p(dut/dyn} along
grid lines normal to parabola surface. For the bound-
ary layer in the axisymmetric flow, on the other hand,

• c u t u r a r t he
l e ad ing edge.

The Mach number profiles for the p l a n a r and axisym-
metrir hypersonic flow over the same parabola w i t h the
same flow conditions are compared in Fig. 10. Notice
tha t the / indexes of the planar results are twice as
large as that for the axisymmetric case because twice
as many grid points are used in the planar calculations
for the same flow geometry. The planar flow field over a
wedge has much small Mach numbers behind the shock
compared with that of the axisymmetric case. Again,
the axisymmetric Mach numbers profiles are much fuller
compared to the planar ones. These differences between
the planar and axisymmetric boundary layers can affect
the stability and transitions of the boundary layers sig-
nificantly.

Unsteady Flow Solutions

Having obtained the steady flow solutions, the gen-
eration of boundary-layer waves by freestream acoustic
disturbances is simulated for axisymmetric hypersonic
flow over a parabolic cone with a freestream disturbance
wave of dimensionless frequency F = 1770.

Figure 11 shows the contours for the instantaneous
axisymmetric entropy perturbation s' after the un-
steady computations are carried out for enough periods
in time that periodic solutions have been reached in
the entire flow field. The instantaneous contours show
the development of a single wave mode in the boundary
layer along the surface. The figure also shows a strong
effect of the bow shock on the receptivity process. Due
to the limit in the length of the computational domain
of the present case, only a single mode is developed in
the flow field. The mode structure shows a typical char-
acteristics of the shock mode and first mode identified
by Refs. [25,29].

Figures 12 and 13 compare the instability wave struc-
ture of the axisymmetric and planar unsteady flows.
The figures show that the axisymmetric wave generated
in the boundary layer has longer wave length than that
of the planar case. The difference in wave lengths may
be a result of the difference in Mach numbers behind
the shock for the two cases. In addition, the axisym-
metric receptivity is also weaker than that of the planar
case. The planar flow generates much stronger fluctu-
ations in the wall-normal velocity disturbances. Figure
12 also shows the physical oscillations of the bow shocks
due to shock interactions with disturbances from both
sides of the shocks.

Figure 14 shows the distribution of instantaneous ax-
isymmetric entropy perturbations along the parabola
surface. The disturbance wave growth in this leading
edge region is similar to that of the planar case.

Figure 15 shows the contours of the Fourer ampli-
tudes for entropy, horizontal velocity, and the Reynolds
stress defined by r = —pu'v'. The freestream distur-
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jv ' i iera te .strong f i r s t -mode wave in the
b o u n d a r y layer along the body surface. The receptiv-
i ty generates negative Reynolds stress in the leading
edge region of the boundary layer and positive Reynolds
stress in the downstream region. The growth of the dis-
turbance wave is more clearly shown by the distribution
of the Fourier amplitudes of the entropy and Reynolds
stress along a (j = 20) grid line above the parabola sur-
face (Figs. 16 and 17). Notice that the entropy ampli-
tude increases as x increases though the corresponding
Reynolds stress is negative in the leading edge region.

In Refs. [17,25], the dominant disturbance waves gen-
erated near the leading edge were identified as the shock
mode followed by the first mode and second mode. The
change of wave modes as the waves propagate down-
stream can be shown by the variation of amplitudes of
perturbations along grid lines normal to parabola sur-
face at several i grid stations. Figures 18 and 19 show
the profiles of \v'\ and \s'\ amplitudes along the wall-
normal directions. The corresponding x coordinates for
the grid points on the body surface are given by Table 1.
These figures show that as the wave propagates down-
stream, the structure of the wave modes goes through a
gradual conversion to a first mode structure at station
z = 75. Figure 19 also shows a high gradient region
very close to the wall surface in entropy profiles but not
in velocity profiles. This thin high gradient layer in the
entropy profiles may be the result of inviscid singularity
of the entropy wave at the wall in the stagnation point
region I3°J.

The Fourier phase angles of various perturbation vari-
ables are useful in understanding the process of wave
development in the flow field. Figure 20 shows the
contours of the Fourer phase angles for pressure, en-
tropy, and horizontal velocity in the axisymmetric flow
field. The smooth increase of pressure phase angles
behind the shock shows that the disturbance waves
in the region immediately behind the shock are dom-
inated by the forced interaction of the waves with the
bow shock. On the other hand, the contours of the
pressure phase angles show that in the leading edge re-
gion, there is very little pressure phase distortion in the
wall-normal direction caused by the effect of the vis-
cous boundary layer*;. As x increases to further down-
stream (x > 0.0), a viscous layer is developed near
the wall which corresponds to the first normal mode
of the boundary layers. These results for the com-
pressible boundary layer are similar to the conversion of
incompressible unsteady boundary-layer solutions near
the leading edge to Tollmien-Schlichting wave solutions
of the Orr-Sommerfeld equation further downstream ̂ .

The contours of the entropy and velocity phase angles
in Fig. 20 show much more complex patterns. Figure 21
shows the profiles of entropy phase angles along wall-
normal grid lines at several i grid stations. Notice that
discontinuities in phase angles in multiples of 360 degs
(near y = 0.03 in Fig. 20.a) are not genuine discon-

t i n u i t i e s because of the p e n u d i t y . These l i o u r e s ,-linw
t h a t there is a viscous layer deve lop ing in the b o u n d a r y
layer .

For weak monochromatic freestream forcing waves,
the generation of instabil i ty waves is expected to be lin-
ear with respect to the forcing amplitudes for the dis-
turbances wi th the same fundamental frequency. At the
same time, receptivity and stability experiments I22'31!
have shown the existence of high harmonics in addition
to the linear waves of fundamental frequency. Buter
and Reed 'l2' found nonlinear supersonic harmonic in
their incompressible receptivity simulations. Nonlinear
higher harmonics are also found in the present DNS
studies of axisymmetric receptivity. Figure 22 shows
the Re(s') of the entropy disturbances along a grid
line above the parabola surface for the fundamental fre-
quency and their second harmonic. Figure 23 shows the
entropy disturbance amplitudes along the same grid line
for the fundamental mode, mean flow distortion, and
second harmonic. The simulations capture the funda-
mental modes as well ae these nonlinear modes.

3-D Unsteady Flow Over A Blunt Wedge

As an example of the application of our new 3-
D shock-fitting hypersonic DNS code to blunt wedge,
we conduct DNS studies of the receptivity of a three-
dimensional boundary layer to weak freestream oblique
acoustic disturbance waves for a hypersonic flow bound-
ary layer over a 2-D parabolic leading edge. Though the
steady mean flow is 2-D, the unsteady disturbance fields
are 3-D because of the oblique freestream waves. The
flow conditions are the same as the axisymmetric flow
case in the previous section 132J. Figure 24 shows the
3-D shock fitted grids of Zone 1 and Zone 2 resolved by
160 x 120 x 16 and 200 x 120 x 16 grids respectively.
The unsteady flow fields are generated by imposing an
oblique freestream disturbance at an angle of if> = 45°
with wave amplitude of e = 5xlO~ 3 and F = 1770. Fig-
ure 25 shows the contours of instantaneous perturbation
v1 after the flow field reaches a periodic state. The in-
stantaneous contours of v' show the development of 3-D
instability waves in the boundary layer on the surface,
similar to the first-mode zone. The second mode region
is also generated near the end of computational Zone
1. The nonlinear superharmonics in time and in the
periodic spanwise direction are analyzed by a Fourier
transform of the instantaneous perturbation solutions.
Detailed results can be found in [32].

Summary

The receptivity of both axisymmetric and 3-D hy-
personic boundary layers to freestream acoustic distur-
bances has been studied by the DNS of Mach 15 mean
flows over a parabolic cone and a parabolic wedge. The
full Navier-Stokes equations are solved by using a new
explicit 3-D fifth-order shock-fitting upwind scheme and
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the Four ie r co l loca t ion m e t h o d . I IK; r e su l t s .show t h a t
new schemes ran resolve I ' - l " ) t r a n s i e n t hypersonic How
w i t h physical bow-shock osc i l l a t ions accu ra t e ly . The
receptivity characteristics of axisymmetric and planar
hypersonic flow over blunt bodies are studied and com-
pared. Compared with the planar case, the axisymmet-
ric flow over a blunt cone has much high after-shock
Mach numbers and much fuller boundary layer profiles.
Consequently, the axisymmetric first mode wave gener-
ated by the receptivity process has longer wave length
and smaller growth rate than the planar case. The sim-
ulations are able to generate detailed flow fields infor-
mation, such as the phase angles and nonliner higher
harmonics, which are useful to the understanding of the
receptivity process.
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b o u n d a r y l a v r r

a: acoustic wave
e: entropy wave
w: vo r t i c i tv wave

„. i A i_ r iu i- -4. £ u r Figure 4: Velocity vectors of a steady axisymmetricFigure 1: A schematic of the receptivity wave field of » „ • , , . • , • n , ,, , . , , • , , x u u ui j f 4. Mach 15 viscous hypersonic flow over a blunt cone,the interaction between the bow shock and tree-stream
disturbances.

bow shock

Figure 2: A schematic of 3-D shock fitted grids for
the DNS of hypersonic boundary-layer receptivity to
freestream disturbances over a blunt leading edge.

Figure 5: Instantaneous perturbations of velocity vec-
tors for the DNS of receptivity to freestream sound for a
Mach 15 hypersonic flow over a blunt cone (F = 1770).
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Figure 3: Computational grid for the DNS of the recep-
tivity of a 3-D hypersonic boundary layer over a blunt
cone.

Figure 6: Variation of axisymmetric steady base flow
pressure along the parabola surface and behind the bow
shock.
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Figure 7: Contours of axisymmetric steady base flow solutions behind the bow shock: Mach numbers (upper figure),
pressure (middle figure), and entropy (lower figure).
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Figure 9: Variation of steady p(dut/dyn] related to the
generalized inflection point for the axisymmetric steady
flow variables along a range of wall-normal grid lines at
several i grid stations.
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Figure 8: Profiles of axisymmetric steady flow variables
along a range of wall-normal grid lines at several i grid
stations: pressure (upper figure), temperature (middle
figure), and tangential and normal velocities (lower fig-
ure).

Figure 10: Comparison of planar and axisymmetric
Mach number profiles along wall-normal grid lines at
several i grid stations: planar 2-D case (upper figure)
and axisymmetric case (lower figure).
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Figure 11: Instantaneous axisymmetric entropy perturbation contours generated by the receptivity to a freestream
acoustic wave by hypersonic flow over a cone (F = 1770).
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Figure 12: Comparison of planar and axisymmetric instantaneous perturbation velocity vector contours for the
case of F = 1770: planar flow (upper figure) and axisymmetric flow (lower figure).
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Figure 13: Comparison of planar and axisymmetric instantaneous perturbation velocity u' contours for the case of
F = 1770: planar flow (upper figure) and axisymmetric flow (lower figure).

Figure 14: Distribution of instantaneous axisymmetric entropy perturbations along the parabola surface (F = 1770).

12

American Institute of Aeronautics and Astronautics



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

Level s

-1.0 -0.5 0.0 0.5 1.0

Level u
4 0.00286955
3 0.00196338
2 0.0010572
1 0.000151029

-1.0 -0.5 0.0 0.5 1.0

Level t,
6 3.132E-7
5 1.063E-7

-1.005E-7
-3.074E-7
-5.143E-7
-7.212E-7

-1.0 -0.5 0.0 0.5 1.0

Figure 15: Fourier amplitude contours of perturbation variables for the axisymmetric flow of F = 1770: entropy
\s'\ (upper figure), horizontal velocity \u'\ (middle figure), and Reynolds stress r = -pu'v1 (lower figure).
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Is'l

Figure 16: Distribution of the axisymmetric entropy
Fourier amplitudes along a (j = 20) grid line above the
parabola surface (F — 1770).

Figure 17: Distribution of the axisymmetric Reynolds
Stress (r = —pu'v') along a (j = 20) grid line above the
parabola surface (F = 1770).
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Iv'l

Figure 18: Profiles of amplitudes of axisymmetric ver-
tical velocity \v'\ perturbations along wall-normal grid
lines at several i grid stations: (a) i = 25, (b) i = 35,
(c) i - 45, (d) i = 55, (e) i = 65, and (f) i = 75.
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Figure 19: Profiles of amplitudes of axisymmetric en-
tropy \s'\ perturbations along wall-normal grid lines at
several i grid stations.

14

American Institute of Aeronautics and Astronautics



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Level <pu

-1.0 -0.5 0.0 0.5 1.0

Figure 20: Contours of Fourier phase angles (in degrees) of perturbation variables for the axisymmetric flow of
F = 1770: pressure <pp (upper figure), entropy <pt (middle figure), and horizontal velocity <pu (lower figure).
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Figure 21: Profiles of axisymmetric entropy \s'\ pertur-
bations phase angles (in degrees) along wall-normal grid
lines at several i grid stations.
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Figure 22: Distribution of the real part of axisymmetric
entropy perturbation Re(s') for the fundamental mode
(n = 1) and the nonlinear second harmonic (n = 2)
along a (j = 20) grid line above the parabola surface.
The magnitude of the second harmonic is amplified 10
times in figures.
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Figure 23: Axisymmetric entropy perturbation ampli-
tudes for the fundamental mode (n — 1), second har-
monic (n = 2), and mean flow distortion (n = 0) along
a (j = 20) grid line above the parabola surface.

Overlap Region

Zone!

Figure 24: Computational grid for 3-D Mach 15 bound-
ary layer receptivity to freestream oblique disturbance
waves for the case of parabolic wedge.

Figure 25: Instantaneous v' contours for the recep-
tivity to freestream disturbances for 3-D hypersonic
boundary-layer over a parabolic wedge (F = 1770).
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