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Direct numerical simulation (DNS) has become a powerful tool in studying fun-
damental phenomena of laminar-turbulent transition of high-speed boundary layers.
Previous DNS studies of supersonic and hypersonic boundary layer transition have
been limited to perfect-gas flow over flat-plate boundary layers without shock waves.
For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition
need to consider the effects of bow shocks, entropy layers, surface curvature, and
finite-rate chemistry. It is necessary that numerical methods for such studies are robust
and high-order accurate both in resolving wide ranges of flow time and length scales
and in resolving the interaction between the bow shocks and flow disturbance waves.
This paper presents a new high-order shock-fitting finite-difference method for the
DNS of the stability and transition of hypersonic boundary layers over blunt bodies
with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The
proposed method includes a set of new upwind high-order finite-difference schemes
which are stable and are less dissipative than a straightforward upwind scheme using
an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order
semi-implicit Runge–Kutta schemes for temporal discretization of stiff reacting flow
equations. The accuracy and stability of the new schemes are validated by numerical
experiments of the linear wave equation and nonlinear Navier–Stokes equations. The
algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers
over a parabolic leading edge to freestream acoustic disturbances.c© 1998 Academic Press

1. INTRODUCTION

The prediction of laminar-turbulent transition of hypersonic boundary layers is critical
to the accurate calculations of drag and thermal loads to hypersonic vehicles [1]. Figure 1
shows a schematic of a generic hypersonic lifting vehicle with boundary-layer transition.
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FIG. 1. A schematic of a generic hypersonic lifting vehicle with boundary-layer transition.

In general, transition is a result of nonlinear response of laminar boundary layers to forcing
disturbances [2, 3], which can originate from freestream acoustic, turbulent, or entropy dis-
turbances, or from disturbances induced by surface roughness or surface vibrations. In an
environment with small initial disturbances, the path to transition consists of three stages:
(1) receptivity, (2) linear eigenmode growth, and (3) nonlinear breakdown to turbulence.
The receptivity process [4] converts the environmental disturbances into boundary-layer in-
stability waves, and provides important initial conditions of amplitude, frequency, and phase
for boundary-layer instability waves [5]. The second stage is the linear eigenmode growth of
boundary-layer instability waves. The relevant wave modes for hypersonic boundary layers
are the first mode and second (acoustic) mode [6], the G¨ortler instabilities [7] over concave
surfaces, and the three-dimensional cross flow instabilities [8]. It has been shown [6, 9] that
both the first and the second mode instabilities are simultaneously present in hypersonic
boundary layers where the second mode is most unstable at high Mach numbers. The third
stage is the breakdown of linear instability waves and transition to turbulence after the linear
growth of instability waves reaches certain magnitudes [10].

Compared with low-speed boundary layers, the transition of hypersonic boundary layers
over blunt bodies is affected by the additional effects of bow-shock interactions, nose blunt-
ness, entropy layer instabilities, and thermo-chemical nonequilibrium at high temperatures.
Figure 2 shows a schematic of wave fields in a hypersonic flow induced by freestream dis-
turbances. Kovasznay [11] showed that weak disturbance waves in compressible flow can
be decomposed into three independent acoustic, entropy, and vorticity modes. Freestream
disturbances are processed by the bow shock before entering the boundary layer. Irrespec-
tive of the nature of the freestream disturbance modes, their interaction with the bow shock
always generates all three types of wave modes, which propagate downstream and interact
with the boundary layer over the body surface. The boundary layer also generates reflected
acoustic waves impinging on the shock from behind and generating further disturbances
to the shock. In addition, an entropy layer is created by the curved bow shock. The swal-
lowing of the entropy layer by the boundary layer has been shown to have strong effects
on the stability and transition of the boundary layer downstream [12] further downstream.
Therefore, it is necessary to include the effects of the bow shock in the studies of hypersonic
boundary-layer transition.

This paper is concerned with finite-difference methods for the DNS of stability and
transition of hypersonic boundary layers over blunt bodies. In DNS studies, boundary-layer



     

664 XIAOLIN ZHONG

FIG. 2. A schematic of the wave field of hypersonic boundary layer receptivity to freestream disturbances.

transition [13] is simulated by numerically solving the three-dimensional Navier–Stokes
equations for the development of disturbance waves in the boundary layers. Highly accurate
numerical methods are needed in order to resolve a wide range of flow time and length scales.
Due to the advances in numerical methods and rapid increases in memory capacity and
computational speeds of available computers, DNS has become a powerful tool in the study
of flow phenomena of the stability and transition of boundary layers [13], especially in the
DNS of incompressible boundary layer stability and transition [14–21]. For compressible
boundary layers over a flat plate, Erlebacheret al.[22, 23] studied the secondary instability
mechanism by temporal and spatial simulations. Thummet al. [24] and Eibler and Bestek
[25] performed spatial DNS of the oblique mode breakdown in supersonic boundary layers
over flat plates. Adams and Kleiser [26] and Guoet al. [27] studied the subharmonic
breakdown process at a freestream Mach number of 4.5 by temporal and spatial simulations.
Pruettet al. [28, 29] conducted temporal and spatial DNS studies of laminar breakdown in
high-speed axisymmetric boundary layers over a hollow cylinder and a sharp cone.

These previous DNS studies of supersonic boundary layers were limited to perfect gas
flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers
over realistic blunt bodies, the DNS studies need to consider the effects of bow shocks,
entropy layers, surface curvature, and finite-rate chemistry. The numerical methods for
such studies need to be robust, high-order accurate, and able to solve the bow shock oscilla-
tions. This paper presents new high-order upwind finite-difference shock-fitting schemes for
the direct numerical simulation of hypersonic flows with strong bow shocks and with (or
without) stiff chemical source terms. A new set of upwind high-order finite-difference
schemes is proposed for the accurate and stable spatial discretization of flow equations
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behind the bow shocks. A shock-fitting formulation is used so that the high-order schemes
can be used to compute unsteady shock motions and its interaction with the transient flow
without introducing spurious numerical oscillations in the solutions. The resulting system of
ordinary differential equations is advanced in time using third-order semi-implicit Runge–
Kutta schemes [30] for stiff reacting flow equations or by regular explicit Runge–Kutta
schemes for non-stiff equations. These three aspects of the numerical method are discussed
further below.

High-Order Upwind Finite-Difference Schemes

The traditional numerical methods for the DNS of transitional and turbulent flows have
been the spectral methods because of their high accuracies. But the applications of the
spectral methods have been limited to flows in simple domains. Several alternative numerical
methods have been used for DNS of transitional and turbulent flows in general geometries.
Examples are the spectral element methods [31], high-order compact (Pad´e) finite-difference
methods [32], and high-order non-compact (explicit) finite-difference methods [18].

Finite-difference methods have recently received much attention for the DNS of tran-
sitional and turbulent flows [17, 18, 26, 29, 32] because they can be easily applied to
complex geometries. Finite-difference schemes include both traditional explicit schemes
and compact [32] schemes. High-order schemes are required because traditional second-
order schemes do not have an adequate accuracy level for the direct numerical simulation.
Most high-order finite-difference methods used in direct numerical simulation are central
difference schemes [29, 32] which introduce only phase errors but no dissipative errors in
numerical solutions. The drawback of central schemes is that they are not robust enough
for convection dominated hypersonic flow simulations. Extra filtering procedures, which
are equivalent to adding numerical dissipation in an ad hoc manner, are needed in order
to stabilize the computations and control the aliasing errors. For example, central differ-
ence schemes of fourth order or higher are unstable when they are coupled with high-order
boundary schemes using one-sided finite-difference approximations [29, 33]. Carpenter
et al. [33] showed that for a sixth-order inner central compact scheme, only a third-order
boundary scheme can be used without introducing instability. This results in a globally
fourth-order accurate scheme even though the inner scheme is sixth-order accurate.

On the other hand, Rai and Moin [18] showed that upwind-bias schemes are very robust
even when they are made high-order accurate. They used a spatially fifth-order upwind
finite-difference scheme using an upwind-bias stencil for the Navier–Stokes equations.
The numerical dissipation in the upwind-bias schemes is enough to control the aliasing
errors. In recent years, many other upwind high-order schemes have also been developed.
Tolstykh [34] proposed a fifth-order compact upwind scheme for moisture transport equation
in atmosphere. Christie [35] proposed a fourth-order compact upwind scheme because
the standard central compact schemes break down in convection dominated problems.
Zingget al.[36] tested the accuracy of a fifth-order explicit upwind finite-difference scheme
with built-in filtering terms in a central grid stencil for linear wave propagation problems.
Sjögreen [37] used explicit numerical damping to stabilize high-order finite-difference
equations for the Navier–Stokes equations. Adams and Shariff [38] proposed fifth-order
upwind compact schemes with spectral-like resolution using central grid stencils for the
direct numerical simulation of shock-turbulence interaction.

This paper presents a family of upwind compact and explicit finite-difference schemes
of third, fifth, and seventh-order and their stable high-order boundary schemes for the DNS
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of hypersonic boundary-layer transition. The main idea is to derive the upwind schemes
so that the dissipative errors are smaller than the dispersive errors inherent in equivalent
central schemes and are large enough to stabilize high-order inner schemes coupled with
boundary closure schemes. Fourier analysis is used to analyze the dissipation and phase
errors, and an asymptotic stability analysis is used to determine the stability of the inner
schemes coupled with boundary conditions. Specifically, central grid stencils are used for
the upwind schemes with adjustable built-in numerical dissipation. The orders of accuracy
of the upwind schemes are one-order lower than the maximum orders the central stencils
can achieve so that there is an adjustable coefficient in the leading dissipative truncation
term. The free parameters are then determined so that the resulting upwind schemes satisfy
dissipation-error and stability conditions. The current upwind schemes are similar to the
upwind schemes of Zingget al. [36] and those of Adams and Shariff [38]. But they are
more general and systematic in derivation and analysis.

High-Order Shock-Fitting Method

For the DNS of hypersonic flow over blunt bodies, high-order linear schemes cannot
be used for grid points across the bow shock fronts with steep gradients because spurious
numerical oscillations are generated at the shocks. Many high-resolution shock capturing
schemes, such as the TVD and ENO [39] schemes, have been developed to capture shock
waves as part of the numerical solutions without numerical oscillations. These shock captur-
ing schemes are adequate for aerodynamic calculations, but they are not accurate enough for
DNS studies, where short wave-length shock/disturbance interactions need to be resolved
with high accuracy.

For DNS of hypersonic boundary layers, the bow shocks can be treated as a computa-
tional boundary using the shock-fitting method [40]. The use of the shock-fitting method
makes it possible to apply high-order linear schemes for spatial discretization of the flow
equations behind the bow shocks. Hussainiet al.[40] used the shock-fitting spectral method
to simulate shock/turbulent interaction. Cai [41] used a shock-fitting method to compute
two-dimensional detonation waves. The interactions between the bow shocks and distur-
bance waves are resolved by the shock-fitting method without generating numerical spu-
rious oscillations. This paper presents a high-order shock-fitting formulation for the DNS
of three-dimensional hypersonic boundary layers with unsteady bow shocks. The current
formulation is simple because the relations across the shock are consistent with conservative
flux and its Jacobian used in computing the conservation equations behind the shocks.

Semi-implicit Runge–Kutta Schemes

The perfect gas assumption commonly used in direct numerical simulation becomes
inaccurate for practical hypersonic flows because flow temperatures rise significantly across
the bow shocks. As a result, the gas between the shock and the body surface becomes
thermally excited and chemically reacting. The temporal integration calculations are often
stiff for such transient reacting flow simulations. We have developed [30] a set of third-
order semi-implicit Runge–Kutta schemes for the high-order temporal discretization of the
flow equations with stiff thermo-chemical nonequilibrium source terms. The third-order
semi-implicit Runge–Kutta schemes are able to compute stiff reactive flow equations with
third-order temporal accuracy and are unconditionally stable for the stiff terms. On the other
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hand, for the DNS of non-reacting perfect-gas hypersonic flows at relative low Reynolds
numbers, the semi-implicit Runge–Kutta schemes are replaced by simpler explicit Runge–
Kutta schemes, such as the low-storage Runge–Kutta schemes of Williamson [42].

2. EQUATIONS

The governing equations for the DNS of hypersonic boundary layer transition are the
three-dimensional Navier–Stokes equations, which can be written in the following conserva-
tion-law form in the Cartesian coordinates,

∂U

∂t
+ ∂Fj

∂xj
+ ∂Fv j

∂xj
= W, (1)

whereU , Fj , andFv j are the vectors of flow variables, convective flux, and viscous flux in
the j th spatial direction respectively, i.e.,

U = {ρm, ρu1, ρu2, ρu3, e} (2)

Fj =


ρmu j

ρu1u j + pδ1 j

ρu2u j + pδ2 j

ρu3u j + pδ3 j

(e+ p)u j

 (3)

Fv j =


0
τ1 j

τ2 j

τ3 j

τ jkuk − qj

 . (4)

In Eq. (1),W=W(U ), is the source terms introduced by the thermo-chemical nonequi-
librium processes. The specific formulas for the source terms are determined by physical
models used for the nonequilibrium processes. Details of a five-species air model for hy-
personic flows can be found in [43].

In this paper, only a special case of perfect-gas hypersonic flow is considered in detail for
the purpose of presenting and testing the numerical methods. The numerical methods can
be extended to nonequilibrium flow easily. For perfect gas flow, the source termW vanishes
and the equation of state and the transport equations are

p = ρRT (5)

e= ρ
(

cvT + 1

2
ukuk

)
(6)

τi j = µ
(
∂ui

∂xj
+ ∂u j

∂xi

)
− λ∂uk

∂xk
δi j (7)

qj = −κ ∂T

∂xj
, (8)

whereR is the gas constant. The specific heatscp andcv are assumed to be constants with a
given ratio of specific heatsγ . The viscosity coefficientµ can be calculated by Sutherland’s
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law in the form

µ = µr

(
T

T0

)3/2 Tr + Ts

T + Ts
(9)

andλ is assumed to be−2µ/3. The heat conductivity coefficientκ can be computed through
a constant Prandtl numberPr.

3. UPWIND SCHEMES USING CENTERED GRID STENCILS

The governing equation (1) is discretized using the method of lines by separate spatial and
temporal discretizations. The main difficulty in the spatial discretization is the numerical
instability of high-order schemes for discretizing the inviscid convective flux terms. High-
order central finite-difference schemes can be used for the viscous flux terms. This paper
derives a family of finite-difference high-order upwind compact and explicit schemes for
the discretization of convective terms for the direct numerical simulations of hypersonic
boundary layers. The model equation of the inviscid Euler equations in deriving the upwind
schemes is the linear wave equation

∂u

∂t
+ c

∂u

∂x
= 0, a ≤ x ≤ b, (10)

wherec> 0. Downwind schemes forc< 0 can be easily obtained from upwind schemes.
In spatial discretization of Eq. (10), the general compact and explicit finite-difference ap-
proximation for∂u/∂x located at thei th grid point can be written as [32, 38]

M0∑
k=−M+M0+1

bi+ku′i+k =
1

h

N0∑
k=−N+N0+1

ai+kui+k, (11)

where uniform grids with grid spacing ofh are assumed, andu′i+k is the numerical approx-
imation of∂u/∂x located at the (i + k)th grid point. On the right hand side of the equation,
a total of N grid points are used withN0 points biased with respect to the base pointi .
A similar grid combination ofM andM0 is used on the left hand side of the equation. In
this paper, a scheme using this grid combination is termed theN-N0-M-M0 scheme, which
includes both compact and explicit schemes as its special cases.

This paper considers a family of upwind compact and explicit high-order finite-difference
methods using central grid stencils, i.e.,

N = 2N0+ 1 (12)

M = 2M0+ 1. (13)

The coefficientsai+k andbi+k of the upwind schemes are determined such that the order of
the schemes is one order lower than the maximum achievable order for the central stencil,
i.e., the orders of the upwind schemes are always odd integers ofp = 2(N0+ M0)− 1. As
a result, there is a free parameterα in the coefficientsai+k andbi+k. The free parameter is
set to be the coefficient of the leading truncation term which is a derivative even order, i.e.,

M0∑
k=−M0

bi+ku′i+k =
1

h

N0∑
k=−N0

ai+kui+k − α

(p+ 1)!
hp

(
∂up+1

∂ p+1x

)
i

+ · · · , (14)
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wherep= 2(N0+M0)− 1, andα is the free parameter. All schemes with nonzeroα are
pth order accurate, and they are central schemes of (p+1)th order whenα = 0. The choice
of α is not unique, and it has effects mainly on the magnitudes of numerical dissipation and
on the stability of the schemes. The specific value ofα for an upwind scheme is chosen to
be large enough to stabilize the high-order upwind inner scheme when it is coupled with
stable boundary closure schemes, and to be small enough so that the dissipation errors are
comparable to the dispersion errors of the inner scheme.

The detailed expressions of the fifth-order upwind compact and explicit upwind schemes
are derived below. Only three-point compact schemes (M = 3) are considered in order
to maintain the computational efficiency of the schemes. The corresponding third- and
seventh-order schemes can be derived similarly, and they are listed in the Appendix.

Fifth-Order Upwind Compact Schemes

A fifth-order compact scheme can be obtained using a 5-2-3-1 grid stencil as

bi−1u′i−1+ bi u
′
i + bi+1u′i+1 =

1

h

2∑
k=−2

ai+kui+k − α

6!
h5

(
∂u6

∂6x

)
i

+ · · · , (15)

where

ai±2 = ±5

3
+ 5

6
α, bi±1 = 20± α

ai±1 = ±140

3
+ 20

3
α

ai = −15α, bi = 60.

These schemes are fifth-order upwind compact schemes whenα <0, and they reduce to the
sixth-order central scheme whenα= 0. The specific value ofα for an upwind scheme is
determined based on the analyses on the dissipation errors and stability of the inner scheme
with boundary conditions.

The dissipation and dispersive errors of the high-order upwind schemes are analyzed
using the Fourier analysis when they are applied to Eq. (10) with a periodic boundary
condition. The trial solution is

u = v(t) eiωx/h. (16)

The exact derivative of the trial solution is

∂u

∂x
= iω

h
u. (17)

Applying the trial function to a finite-difference scheme given by Eq. (14) leads to

∂u

∂x
= iω1

h
u, (18)

where

ω1 = −i

∑N0
k=−N0

ai+k eikω∑M0
k=−M0

bi+k eikω
. (19)
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The dimensionless dispersive (phase) and dissipative errors of using the finite-difference
scheme to approximate the derivative in the linear wave equation are represented by the
real and imaginary parts ofω1− ω, i.e.,

Phase Errors= Real(ω1− ω) (20)

Dissipation Errors= Im(ω1), (21)

where the errors are functions of the dimensionless parameterω.
Figure 3 shows the dispersion and dissipation errors of three fifth-order compact 5-2-3-1

schemes withα at 0,−1, and−2. The figure shows that compact upwind schemes with
different values ofα have different phase errors as shown by the solid lines in the figures
because of the rational formulas used in the compact schemes. The dissipation errors of the
compact schemes increase asα increases. Forα satisfying

−1≤ α ≤ 0 (22)

the dissipation errors of the upwind compact schemes are smaller or comparable to the
corresponding phase errors. Therefore, the value ofα satisfying (22) is considered to satisfy
the dissipation condition. The smaller is the magnitude ofα, the smaller are the dissipation
errors of the upwind compact schemes.

Though very small or zero values ofα lead to a scheme with very small or no dis-
sipation, whenα is too small, a compact 5-2-3-1 scheme is not stable when the inner

FIG. 3. Phase errors(<(ω1) − ω) and dissipation errors=(ω1) of the fifth-order upwind compact schemes
5-2-3-1 with several values ofα. The three solid lines from top to bottom correspond to the phase errors of the
schemes usingα values of 0,−1, and−2, respectively.
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scheme is coupled with high-order boundary closure schemes. Therefore in addition to
the dissipation condition,α should also be large enough to stabilize the inner scheme
when it is coupled with boundary closure schemes. The stability analysis is based on the
asymptotic stability analysis for the interior scheme with boundary closure. We do not
use the stability analysis of Gustafssonet al. [44] based on the normal mode approach
because of the complexity of the analysis for high-order upwind schemes. The asymp-
totic stability of the upwind schemes with numerical boundary closures is analyzed by
computing the eigenvalues of the matrices obtained by spatial discretization of the wave
equation. The asymptotic stability, which requires that the eigenvalues of the spatial dis-
cretization matrices contain no positive real parts, is necessary for the stability of long-
time integration of the equation. The eigenvalue analysis is only a necessary condition
for the stability of the schemes when the matrices do not have full sets of eigenvalues
and eigenfunctions. Numerical computations show that the matrices for high-order up-
wind schemes with boundary conditions have full eigenvalues. For such normal matrices,
the eigenvalue analysis is accurate in assessing the stability of high-order finite-difference
schemes.

High-order finite-difference schemes require additional numerical boundary schemes
at grid points near the boundaries of the computational domain. For apth order interior
scheme, the accuracy of boundary schemes can be (p− 1)st order accurate without reduc-
ing the global accuracy of the interior scheme. For the fifth-order compact upwind 5-2-3-1
schemes, two numerical boundary conditions are needed on both ends of the boundaries.
Fourth-order boundary schemes are used in order to maintain fifth-order overall accu-
racy. Both compact and explicit finite-difference schemes using one-sided bias stencils can
be used as numerical boundary schemes. The fifth-order inner upwind compact schemes
with fourth-order compact boundary schemes, which are represented by 4,4-5-4,4 [33],
are

60u′0+ 180u′1 =
1

h
(−170u0+ 90u1+ 90u2− 10u3) (23)

15u′0+ 60u′1+ 15u′2 =
1

h
(−45u0+ 45u2) (24)

bi−1u′i−1+ bi u
′
i + bi+1u′i+1 =

1

h

2∑
k=−2

ai+kui+k (i = 2, 3, . . . , N − 2) (25)

15u′N + 60u′N−1+ 15u′N−2 =
−1

h
(−45uN + 45uN−2) (26)

60u′N + 180u′N−1 =
−1

h
(−170uN + 90uN−1+ 90uN−2− 10uN−3), (27)

where the coefficients for the inner schemes are given by Eq. (15). Substituting the app-
roximation above into the wave equation (10) with the non-periodic boundary condition at
x = 0 leads to

B
dU

dt
= c

h
AU + g(t), (28)
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whereU = (u1, . . . ,uN)
T , g(t)=− c

hu0(t)[−10, 0, . . . ,0, 0]T , and

A = −



−90 90 10
·

ai−2 ai−1 ai ai+1 ai+2

·
−45 0 45

10 −90 −90 170


(29)

B =



60 60
·

bi−1 bi bi+1

·
15 60 15

180 60


. (30)

The asymptotic stability condition for the semi-discrete equations is that all eigenvalues of
matrixP= B−1A contain no positive real parts.

Figure 4 shows the eigenvalue spectra ofλi for the upwind compact 5-2-3-1 schemes
with a 4,4-5-4,4 compact boundary closure. The figure shows that sixth-order central dif-
ference compact schemes (α= 0) are not stable when they are coupled with fourth-order
boundary schemes. Carpenteret al. showed that for the sixth-order 5-2-3-1 central com-
pact scheme, the stable boundary conditions are 3,4-6-4,3 schemes. However, computations

FIG. 4. Eigenvalue spectra for the fifth-order upwind compact 5-2-3-1 schemes with several values of
α (N= 50).
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using the 3,4-6-4,3 schemes are only fourth-order globally accurate even though the inner
schemes are sixth-order accurate. The figure shows that the use of upwinding in inner
schemes help to stabilize the schemes coupled with the high-order boundary conditions.
The recommended values of the free parameterα in the upwind schemes are chosen to
stabilize the high-order boundary closures. The value forα that satisfies both stability and
dissipation conditions is chosen to beα=−1, at which the scheme is stable. The fifth-order
upwind compact inner scheme using the value ofα=−1 is

25u′i−1+ 60u′i + 15u′i+1 =
1

h

(
−5

2
ui−2− 160

3
ui−1+ 15ui + 40ui+1+ 5

6
ui+2

)
. (31)

In numerical simulation of Navier–Stokes equations for multi-dimensional flows, the actual
value ofα can be slightly different from the recommended value because of the nonlinearity
of the equations.

Fifth-Order Upwind Explicit Schemes

A fifth-order explicit scheme can be obtained using a 7-3-1-0 grid stencil as

u′i =
1

hbi

3∑
k=−3

ai+kui+k − α

6!bi
h5

(
∂u6

∂6x

)
i

+ · · · , (32)

where

ai±3 = ±1+ 1

12
α, ai±2 = ∓9− 1

2
α

ai±1 = ±45+ 5

4
α, ai = −5

3
α

bi = 60.

These schemes are fifth-order upwind explicit schemes whenα <0, and they reduce to a
sixth-order central scheme whenα= 0. Again, the specific value ofα is determined by the
conditions on dissipation errors and stability. The recommended value forα is obtained to
beα=−6, and the corresponding fifth-order upwind explicit inner scheme is

u′i =
1

60h

(
−3

2
ui−3+ 12ui−2− 105

2
ui−1+ 10ui + 75

2
ui+1− 6ui+2+ 1

2
ui+3

)
. (33)

It is noted that the fifth-order upwind-bias (6-2-1-0) scheme of Rai and Moin [18] is a special
case of the current fifth-order upwind schemes corresponding toα=−12 andai+3= 0. The
numerical dissipation of the current fifth-order upwind scheme given by Eq. (33) is about
half as large as the upwind scheme using a upwind-bias stencil.

Figure 5 shows the dispersion and dissipation errors of the upwind explicit 7-3-1-0
schemes with three different values ofα of−6,−12,−24. All seven-point explicit schemes
of different values ofα have the same phase errors as the sixth central scheme represented
by the solid line in the figure. As|α| increases, the numerical dissipation increases. The
figure shows that at the recommended value ofα = −6, the dissipation errors are smaller
than the phase errors. The figure also includes the errors for the upwind-bias schemes [18],
which correspond toα=−12. The figure confirms that the present upwind schemes using
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FIG. 5. Phase errors(<(ω1) − ω) and dissipation errors=(ω1) of the fifth-order upwind explicit schemes
7-3-1-0 with several values ofα.

the recommended values ofα=−6 have smaller dissipation errors than the schemes using
upwind bias stencils. Therefore, the stability and accuracy consideration in this paper leads to
upwind schemes which are stable and are numerically less dissipative than a straightforward
upwind scheme using an upwind-bias grid stencil.

Figure 6 shows the eigenvalue spectra for the stability of the fifth-order upwind explicit
inner 7-3-1-0 schemes coupled with fourth-order explicit boundary closure schemes (4,4,
4-5-4,4,4). The figure shows that the explicit sixth-order central scheme (α= 0) with fourth-
order boundary schemes is not stable. Again, the implicit numerical dissipation in the
upwind schemes has a stabilizing effect on the high-order schemes with boundary closures.
At the recommended value for this scheme ofα=−6, the inner scheme with fourth-order
boundary closures is stable.

Compact vs Non-compact(Explicit) Schemes

Compact schemes have been favored for the direct numerical simulations of transitional
and turbulent flows because of their smaller truncation errors and narrower local grid stencils.
The stability analysis in this section (Figs. 4 and 6) shows that the stability properties of
compact and explicit schemes of the same order are very similar. Compared with the upwind
compact schemes of the same order, high-order explicit upwind schemes can achieve the
same order of accuracy with stable high-order boundary closures though more boundary
closures are needed for the explicit schemes. These results suggest that the common belief
that it is easier to set stable boundary conditions for compact high-order schemes because
of narrower grid stencils is not true. In addition, the explicit schemes have the advantage of
requiring less computations in derivative approximations and of being easier to be applied
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FIG. 6. Eigenvalue spectra for the fifth-order upwind explicit schemes 7-3-1-0 with several values of
α (N= 50).

to implicit time-integration schemes for stiff systems of reactive flow equations. Therefore,
both the compact and explicit schemes have their advantages and disadvantages. Between
the two approaches, the compact schemes are the method of choice for discretization of
derivatives in the direction with periodic boundary conditions. For discretization in the
direction with non-periodic boundary conditions, the accuracy of the computations is often
limited by the accuracy of boundary schemes. In this case, both explicit and compact upwind
schemes can be used.

Extension to Systems of Equations

The current upwind schemes are applied to the system of equations (1) by flux splitting or
by applying the schemes in each characteristic field. A simple local Lax–Friedrichs scheme
can also be used to split an inviscid flux vectorFj into positive and negative wave fields so
that the upwind schemes can be applied,

Fj = F+j + F−j , (34)

where

F+j =
1

2
(Fj + λU ) (35)

F−j =
1

2
(Fj − λU ), (36)

whereλ is a positive parameter chosen to be larger than the local maximum eigenvalues
of Fj . The flux F+j andF−j contains only positive and negative eigenvalues, respectively.
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Therefore, in the spatial discretization of Eq. (1), the flux derivatives are split into two terms
where the first term is discretized by an upwind high-order finite-difference method and the
second term is discretized by a downwind high-order finite-difference method.

For the compressible Navier–Stokes equations (1) in a conservation-law form, the second-
order derivatives do not appear explicitly in the equations. Instead, they appear as first-order
derivatives in the transport flux vectors in Eq. (4). For such equations, the viscous terms
can be discretized by applying central finite-difference operators for the first derivative
twice [37]. The approximation of the first-order derivative for computing the viscous terms
can be done using standard central compact or explicit schemes with one-sided difference
approximation. For example, the sixth-order central inner schemes (5-3-3-1) and the sixth-
order compact boundary schemes are

60u′0+ 300u′1 =
1

h
(−197u0− 25u1+ 300u2− 100u3+ 25u4− 3u5) (37)

15

2
u′0+ 60u′1+ 45u′2 =

1

h

(
−215

8
u0− 50u1+ 135

2
u2+ 10u3− 5

8
u4

)
(38)

bi−1u′i−1+ bi u
′
i + bi+1u′i+1 =

1

h

2∑
k=−2

ai+kui+k (i = 2, 3, . . . , N − 2) (39)

45u′N−2+ 60u′N−1+
15

2
u′N =

1

h

(
215

8
uN + 50uN−1− 135

2
uN−2− 10uN−3+ 5

8
uN−4

)
(40)

60u′N + 300u′N−2 =
1

h
(197uN + 25uN−1− 300uN−2+ 100uN−3

− 25uN−4+ 3uN−5), (41)

where the coefficients for the inner schemes are given by Eq. (15) withα= 0. The formulas
can be written into matrix form

BU ′ = AU, (42)

whereU = (u0, . . . ,uN)
T . The second-order derivative in viscous terms is obtained by

applying the first-order operator twice, i.e.,

BU ′′ = AU ′ = AB−1AU. (43)

Another approach is to apply high-order central schemes directly to second-order deriva-
tives in the equations. While the previous approach is easier to be implemented in simu-
lations, the direct discretization of the second-order derivatives is more stable in practical
calculations of the Navier–Stokes equations. The previous approach also leads to a wider grid
stencil than applying central compact schemes directly to a second-order derivative directly.

Effect of Grid Stretching

The high-order schemes in this paper are derived for uniform grids. For viscous flow
simulations, however, grids are often strongly stretched in the direction normal to the wall
in order to cluster more grid points near the wall. We investigate the effect of grid stretching
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on the stability and accuracy of high-order difference schemes applied to a linear wave
equation. Two approaches can be used to apply a high-order finite-difference scheme to
the wave equation in a stretched grid. The first approach transforms the equation in the
physical domain of a stretched grid into the computational domain of a uniform grid by
a coordinate transformation. The transformed equation is then discretized by the finite-
difference scheme in the uniform computational grid. The second approach applies the
high-order polynomial interpolation directly to the stretched physical grid without using
the coordinate transformation. The asymptotic stability properties, and phase and dissipation
errors, of the finite-difference scheme in the stretched grid can be investigated using the
same analyses of the preceding sections for the uniform grids.

The asymptotic stability analysis for the two approaches is carried out for the fifth-
order upwind explicit 7-3-1-0 scheme withα=−12 coupled with the fourth-order explicit
boundary closure schemes (4,4,4-5-4,4,4). The specific stretched grid is specified by the
following coordinate transformation [45],

ξ = α − (1− α) ln((β + x(2α + 1)− 2α)/(β − x(2α + 1)+ 2α))

ln((β+1)/(β − 1))

(0≤ x ≤ 1, 0≤ ξ ≤ 1), (44)

where a uniform gridξ in the computational domain is transformed into a stretched grid
x in the physical domain, and the extent of the stretching is determined by the values of
α andβ. The values used in the analysis areα= 0.5 andβ = 1.01015. Figure 7 shows the

FIG. 7. Eigenvalue spectrum for the fifth-order upwind explicit scheme (7-3-1-0 andα=−12) applied
to the linear wave equation by using the approach of coordinate transformation in two sets of stretched grids
(N= 100, 200).
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FIG. 8. Eigenvalue spectrum for the fifth-order upwind explicit scheme (7-3-1-0 andα=−12) applied to
the linear wave equation by using the approach of direct polynomial interpolation in the non-uniform physical
coordinates in two sets of stretched grids(N= 100, 200).

eigenvalue spectrum for the fifth-order scheme applied to the wave equation by using the
approach of coordinate transformation. The figure shows that the scheme becomes unstable
for strongly stretched grids. As the number of grid points increases, the relative stretching
of the grid reduces and the scheme becomes less unstable. Further calculations also show
that the scheme eventually becomes stable when the grid is uniform enough. Therefore,
grid stretching has a destabilizing effect when the fifth-order scheme is applied to the wave
equation by a coordinate transformation. On the other hand, if the high-order scheme is
obtained by a direct high-order polynomial interpolation in the physical non-uniform grid,
the asymptotic stability analysis shows that such a high-order scheme is stable for highly
stretched grids as shown by Fig. 8. Similar asymptotic stability analysis has also been
carried out for a linear one-dimensional heat equation. It is found that the grid stretching
does not have destabilizing effects on the stability of the diffusive equation calculation
using high-order central schemes based on coordinate transformation. Therefore, the new
high-order schemes based on the approach of coordinate transformation will be stable for a
stretched grid in the boundary layers where the equations are dominated by viscous terms.
On the other hand, for flow fields with strong convection, such as the flow immediately
behind the bow shocks, the grid stretching near the shocks may cause numerical instability
if high-order schemes are applied in transformed coordinates. In such cases, the high-order
schemes should be applied directly in the physical coordinates.

The effect of grid stretching on the accuracy of the high-order schemes is investigated by
computing the dispersion and dissipation errors using similar formulas as Eqs. (20) and (21).
Figure 9 shows the dispersion and dissipation errors of the fifth-order upwind explicit
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FIG. 9. Phase errors(<(ω1) − ω) and dissipation errors=(ω1) of the fifth-order upwind explicit scheme
(7-3-1-0 andα=−12) applied to the linear wave equation by using the approach of direct polynomial interpolation
in the non-uniform physical coordinates in a set ofN= 120 stretched grids.

7-3-1-0 schemes withα=−12 in the same stretched grid used in the stability analysis. The
accuracy of the scheme in the stretched grid is compared with that in a uniform grid of the
same size. The figure shows that the dissipation and the phase errors in a stretched grid are
comparable or slightly larger to those in the uniform grid.

4. HIGH-ORDER SHOCK-FITTING FORMULATIONS

A shock-fitting method is used to compute unsteady three-dimensional viscous hyper-
sonic flow over blunt bodies. The governing equations are solved in general curvilinear
three-dimensional coordinates (ξ, η, ζ, τ ) along body fitted grid lines shown in Fig. 10. The
bow shock is treated as a computational boundary where the transient shock movement is
solved as a part of the solutions. Consequently, the grid surface ofη= constant is unsteady
due to the shock movement, but the grid surfaces ofξ = constant andζ = constant are
fixed planar surfaces during the calculations. Therefore, the transformation relations bet-
ween the Cartesian coordinates and the (ξ, η, ζ, τ ) coordinates for the current shock-fitting
computations are 

ξ = ξ(x, y, z)
η = η(x, y, z, t)
ζ = ζ(x, y, z)
τ = t

⇔


x = x(ξ, η, ζ, τ )
y = y(ξ, η, ζ, τ )
z = z(ξ, η, ζ, τ )
t = τ,

(45)

whereξt = 0 andζt = 0.
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FIG. 10. A schematic of three-dimensional shock-fitting grids for the direct numerical simulation of hyper-
sonic boundary-layer receptivity to freestream disturbances over a blunt leading edge.

The governing equation (1) is transformed into the computational domain (ξ, η, ζ, τ ) as

1

J

∂U

∂τ
+ ∂E′

∂ξ
+ ∂F ′

∂η
+ ∂G′

∂ζ
+ ∂E′v

∂ξ
+ ∂F ′v
∂η
+ ∂G′v

∂ζ
+U

∂(1/J)

∂τ
= W

J
, (46)

where

E′ = F1ξx + F2ξy + F3ξz

J
(47)

F ′ = F1ηx + F2ηy + F3ηz+Uηt

J
(48)

G′ = F1ζx + F2ζy + F3ζz

J
(49)

E′v =
Fv1ξx + Fv2ξy + Fv3ξz

J
(50)

F ′v =
Fv1ηx + Fv2ηy + Fv3ηz

J
(51)

G′v =
Fv1ζx + Fv2ζy + Fv3ζz

J
, (52)

whereJ is the Jacobian of the coordinate transformation, andξx, ξy, ξz, ηx, ηy, ηz, ηt , ζx, ζy,
andζz are the grid transformation metrics which are functions of the distanceH(ξ, ζ, τ )
between the shock and the wall along aη= constant grid line, and the time derivativeHτ .
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In Eq. (46), the transformed inviscid fluxesE′, F ′, andG′ are standard flux terms with
full sets of eigenvalues and eigenvectors. The transport flux termsE′v, F ′v, andG′v contain
first-order spatial derivatives of velocity and temperature. The governing equations (46) are
discretized in the uniform computational space.

The shock-fitting method treats the bow shock as a computational boundary at

η(x, y, z, t) = ηmax= constant. (53)

The flow variables immediately behind the shock are determined by the Rankine–Hugoniot
relation across the shock and a characteristic compatibility equation from the flow field
behind the shock. The position and velocity of the shock front are functions ofH(ξ, ζ, τ )
and Hτ (ξ, ζ, τ ), which are solved as independent flow variables using high-order finite-
difference methods. The normal vector of the shock front is

n = ηx i + ηyj + ηzk
|∇η| (54)

and the velocity of the shock front in the direction ofn is

vn = − ηt

|∇η| , (55)

where|∇η| =
√
η2

x + η2
y + η2

z.

The flow variables across the shock are governed by the Rankine–Hugoniot conditions,

F ′s = F ′0 (56)

where the subscripts represents the variable immediately behind the shock and subscript 0
represents the variable on the free stream side of the shock surface. The fluxF ′ is the flux
in the computational space along theη grids line. Equation (48) leads to

F ′ = |∇η|
J
(F · n− vnU ), (57)

whereF= F1i + F2 j + F3k.
The Rankine–Hugoniot relations (56) lead to jump conditions for flow variables behind

the shock as functions ofU0 and the grid velocityvn, i.e.,

ps = p0

[
1+ 2γ

γ + 1

(
M2

n0− 1
)]

(58)

ρs = ρ0

[
1+ (γ + 1)M2

n0

(γ − 1)M2
n0+ 2

]
(59)

uns = vn + ρ0

ρs
(un0− vn) (60)

uts = ut0 = u0− un0n (61)

us = uts + unsn = u0+ (uns− un0)n, (62)

whereMn0 is the normal component of the freestream Mach number relative to the shock
motions,u is the velocity vector,ut is the tangential velocity vector, andun is the normal
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velocity component. In order to compute the flow variable behind the shock using the
shock jump conditions above, the velocity of the shock frontvn is needed. The shock
normal velocity is determined by a characteristic compatibility equation at the grid point
immediately behind the shock.

The shock-fitting computations and the shock geometry transformation relations are
greatly simplified if the characteristic compatibility equation is written in the conservation-
law form, which can be derived directly from Eq. (46) in the direction along theη coor-
dinates. Specifically, the interior equation (46) in the computational domain at the point
immediately behind the shock front can be written as

1

J

∂U

∂τ
+ ∂F ′

∂η
= W

J
− ∂E′

∂ξ
− ∂G′

∂ζ
− ∂E′v

∂ξ
− ∂F ′v
∂η
− ∂G′v

∂ζ
−U

∂(1/J)

∂τ
, (63)

where the equation is evaluated at points immediately behind the shock. In the equations,
the Jacobian matrix,B′s= (∂F ′/∂U )s, has the eigenvalues

|∇η|
J
(un − vn)s, . . . ,

|∇η|
J
(un − vn)s,

|∇η|
J
(un − vn − c)s,

|∇η|
J
(un − vn + c)s (64)

wherec is speed of the sound. The corresponding left eigenvectors are

l1, l2, . . . , lN−1, lN, (65)

whereN is the number of independent variables in the equations, and

lN = 1

c2



γ−1
2 u · u− cun

−( 1
2cnx − γ−1

2 u
)

−( 1
2cny − γ−1

2 v
)

−( 1
2cnz− γ−1

2 w
)

γ−1
2


s

. (66)

The left eigenvector behind the shock satisfies

lN · B′s =
|∇η|

J
(un − vn + c)slN. (67)

The characteristic field approaching the shock from behind corresponds to the eigenvalue
with a positive sign which is|∇η|J (un − vn + c)s. The corresponding eigenvector islN. The
compatibility relation at a grid point immediately behind the shock for this characteristic
field can be obtained by multiplying Eq. (63) bylN,

lN ·
(
∂U

∂τ

)
= lN ·

(
W

J
− ∂E′

∂ξ
− ∂F ′

∂η
− ∂G′

∂ζ
− ∂E′v
∂ξ
− ∂F ′v
∂η
− ∂G′v
∂ζ
−U

∂(1/J)

∂τ

)
J. (68)

On the other hand, the shock jump condition (56) can be rewritten as

[F ′] = (Fs− F0) · a+ (Us −U0)b = 0, (69)
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where

a =
(
ηx

J

)
s

i +
(
ηy

J

)
s

j +
(
ηz

J

)
s

k (70)

b =
(
ηt

J

)
s

. (71)

Taking the derivative of Eq. (69) with respective toτ in the computational space leads to

B′s
∂Us

∂τ
− B′0

∂U0

∂τ
+ (Fs− F0) · ∂a

∂τ
+ (Us −U0)

∂b

∂τ
= 0, (72)

where the flux Jacobian

B′ = ∂F ′

∂U
(73)

is the Jacobian of theη direction flux defined in the conservation equations (46), and

∂a
∂τ
= ∂(ηx/J)s

∂τ
i + ∂(ηy/J)s

∂τ
j + ∂(ηz/J)s

∂τ
k (74)

∂b

∂τ
= ∂(ητ /J)s

∂τ
. (75)

These time derivatives of the grid metrics can be derived by the same methods as those used
in discretization of the interior equations.

Finally, the equation for the shock velocity can be obtained by multiplying both sides of
Eq. (72) bylN and using the relation of (67), i.e.,

∂b

∂τ
= −1

[lN · (Us −U0)]
(76)[ |∇η|

J
(un − vn + c)slN ·

(
∂U

∂τ

)
s

+ lN · (Fs− F0) · ∂a
∂τ
− (lN · B′0)

∂U0

∂τ

]
, (77)

where the termlN · ∂Us
∂τ

is computed using the characteristic relation (68), in which the
spatial derivatives are discretized together with the discretization of the interior points for
the Eq. (46) using the same schemes at the interior algorithm applied to boundary behind
the shock. In the equation above,∂b

∂τ
and ∂a

∂τ
can be expressed as a function ofH andHτ as

∂b

∂τ
= d1(ξ, ζ, H, Hτ )+ d2(ξ, ζ, H, Hτ )

∂Hτ

∂τ
(78)

∂a
∂τ
= g(ξ, ζ, H, Hτ ), (79)

whereH = H(ξ, ζ, τ ) is the distance between the shock and the wall along anη= constant
grid line, andHτ = ∂H/∂τ . The coefficients,d1, d2, and vectorg are functions of grid
metrics.

Therefore, the governing equations for the two independent variables,H and Hτ , for
shock motions can be obtained from Eqs. (77) to (79) in the form{

∂Hτ

∂τ
= f

(
ξ, ζ,Us, lN ·

(
∂U
∂τ

)
s
,U0,

∂U0
∂τ
, H, Hτ

)
∂H
∂τ
= Hτ .

(80)

The two equations are additional governing equations for the shock normal velocity and
shock shape. They are integrated in time simultaneously with the interior flow variables
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and are advanced in time using the same Runge–Kutta methods as the interior Eq. (46).
After the values ofH and Hτ are determined, the flow variables behind the shock can be
computed by the jump conditions across the shock using Eqs. (58) to (62). The grids and
metrics are modified according to the new values ofH andHτ .

The current formulation is simple in high-order implementation because the governing
equations for the shock movement are derived using conservative variable and flux Jacobian
in Eq. (72) using the relation (67). The same discretization of the interior governing equa-
tions is used to evaluate( ∂Us

∂τ
)s at grid points immediately behind the shock. In addition,

all geometric definitions of the shock front are the same as the grid metrics used in the
interior equation transformation, which are stored in the computer. In doing so, the current
approach avoids the complication of using the non-conservation variables and locally de-
fined geometric parameters for the shock front in deriving the time derivatives of the shock
jump condition.

5. SEMI-IMPLICIT RUNGE–KUTTA SCHEMES

The spatial discretization of the governing equations leads to a system of first-order
ordinary differential equations for the flow variables. Explicit Runge–Kutta schemes of up
to third order accuracy, such as the low-storage Runge–Kutta schemes of Williamson [42],
can be used to advance the equations in time for the DNS of non-reacting hypersonic flows.
For reacting hypersonic flow simulations, the thermo-chemical source termW(U ) is often
stiff in temporal discretization. Semi-implicit Runge–Kutta schemes of up to third order
derived by Zhong [30] can be used. The semi-implicit Runge–Kutta schemes are briefly
described below. The details of the derivations of the third-order semi-implicit Runge–Kutta
schemes can be found in [30].

The spatial discretization of reacting flow equations leads to

du
dt
= f(u)+ g(u), (81)

whereu is the vector of discretized flow field variables,f contains the non-stiff terms
resulting from spatial discretization of the flux terms which can be computed explicitly, and
g contains the stiff thermo-chemical source terms which need to be computed implicitly.
For high-order temporal integration of the stiff governing equations, Ref. [30] derived
three versions of 3-stage third-order semi-implicit Runge–Kutta schemes for integrating
Eq. (81) by simultaneously treatingf explicitly andg implicitly. The coefficients of the
semi-implicit schemes were derived such that the schemes are high-order accurate with the
simultaneous coupling between the implicit and explicit terms. In addition, the schemes are
unconditionally stable for the stiff terms when a CFL condition is satisfied for the explicit
terms.

ASIRK-3A Scheme
k1 = h

{
f(un)+ g

(
un + a1k1

)}
k2 = h

{
f
(
un + b21k1

)+ g
(
un + c21k1+ a2k2

)}
k3 = h

{
f
(
un + b31k1+ b32k2

)+ g
(
un + c31k1+ c31k2+ a3k3

)}
un+1 = un + ω1k1+ ω2k2+ ω3k3
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ASIRK-3B Scheme

[
I − ha1J(un)

]
k1 = h{f(un)+ g(un)}[

I − ha2J(un)
]
k2 = h

{
f
(
un + b21k1

)+ g
(
un + c21k1

)}[
I − ha3J(un)

]
k3 = h

{
f
(
un + b31k1+ b32k2

)+ g
(
un + c31k1+ c32k2

)}
un+1 = un + ω1k1+ ω2k2+ ω3k3

ASIRK-3C Scheme

[
I − ha1J(un)

]
k1 = h{f(un)+ g(un)}[

I − ha2J
(
un + c21k1

)]
k2 = h

{
f
(
un + b21k1

)+ g
(
un + c21k1

)}[
I − ha3J

(
un + c31k1+ c32k2

)]
k3 = h

{
f
(
un + b31k1+ b32k2

)
+ g
(
un + c31k1+ c32k2

)}
un+1 = un + ω1k1+ ω2k2+ ω3k3,

whereJ is the Jacobian ofg vector. The parameters are

ASIRK-3A,ASIRK-3B, and ASIRK-3C

ω1 = 1
8

b21 = 8
7

ω2 = 1
8

b31 = 71
252

ω3 = 3
4

b32 = 7
36

ASIRK-3A

a1 = .485561

c21 = .306727

a2 = .951130

c31 = .45

a3 = .189208

c32 = −.263111

ASIRK-3B

a1 = 1.40316

c21 = 1.56056

a2 = .322295

c31 = 1
2

a3 = .315342
c32 = −.696345

ASIRK-3C

a1 = .797097

c21 = 1.05893

a2 = .591381

c31 = 1
2

a3 = .134705
c32 = −.375939,

wherea1,a2,a3, c21, andc32 are irrational numbers with six significant digits. The double-
precision values of these parameters can be found in [30]. The first method above uses
diagonally implicit Runge–Kutta methods for the stiff termg, which leads to a nonlinear
equation at every stage of the implicit calculations ifg is a nonlinear function ofu. The
second and third methods use linearized implicit schemes for the stiff termg. Methods B
and C, which are similar to linearized implicit methods commonly used in computing
reactive flows, are more efficient than the full implicit method A. However, for some stiff
nonlinear problems, method A is necessary because it is more stable than the Rosenbrock
semi-implicit Runge–Kutta method.
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6. RESULTS OF NUMERICAL EXPERIMENTS

The new high-order upwind schemes with and without the shock-fitting procedure are
validated and tested in computations for the linear wave equation and nonlinear Navier–
Stokes equations. The numerical accuracy and stability of the high-order upwind schemes
without the shock-fitting procedure are first validated in computations of the linear model
wave equation. The schemes are then applied to the computations of the Navier–Stokes
equations for steady and unsteady supersonic Couette flows, where the shock fitting pro-
cedure is not needed. The numerical solutions are compared with analytical solutions and
are evaluated by grid refinements. The upwind schemes with the shock-fitting procedure
are subsequently applied to a two-dimensional steady hypersonic flow over a cylinder. The
numerical results are compared with experimental results and evaluated by grid refinements.
The focus of the test cases is on the high-order upwind schemes and the shock-fitting formu-
lations. Therefore, the Navier–Stokes equations with perfect-gas assumption are assumed
in the test cases of this paper. The applications of semi-implicit Runge–Kutta schemes for
reacting hypersonic flow simulations are an independent research topic of their own. They
are presented in other papers [46].

Linear 1-D Wave Equation

The new compact and explicit upwind schemes are tested in computations for the one-
dimensional linear wave equation (10). Both periodic and non-periodic boundary conditions
are computed to test the accuracy of schemes with and without boundary closures. The
parameters of the calculations area = 0, b = 1, c = 1, N + 1 uniform grid points, and the
initial condition is

u(x, 0) = sin(ωπx), 0≤ x ≤ 1. (82)

The temporal time marching scheme is a third-order explicit Runge–Kutta scheme. In order
to compare spatial discretization errors of different schemes, a small CFL number of 0.005
is used so that the temporal discretization errors are negligible compared with those of the
spatial discretization. Grid refinements in time are used to ensure that the solutions are
independent of the time step sizes.

The results of the new upwind schemes are compared with those of the sixth-order
standard central compact scheme with stable 3,4-6-4,3 boundary closure and a fourth-
order compact central 7-3-5-2 scheme of Lele [32] for spectral-like resolution. The 7-3-5-2
optimized scheme [32] is fourth-order accurate but has smaller phase errors at large wave
numberω. Though the order of the scheme is lower than the maximum achievable order
for the stencil it used, the degree of freedom in deriving the coefficients is used to minimize
the phase errors in resolving high wave-number modes. Compared with schemes with
maximum order accuracy, the optimized schemes have lower accuracy for resolving modes
of smallω, but they have higher accuracy in resolving modes of largerω. It is expected
that the optimized schemes resolve a range of length scales better than the maximum
order schemes. Similar approaches have also been used in optimizing finite-difference
schemes for various applications [36, 38, 47, 48]. The optimized schemes, however, are
derived without considering the effects of boundary conditions. For computations with
non-periodic boundary conditions, it is not clear how boundary closure schemes would
affect the performance of the optimized schemes.
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TABLE I

L1 Errors of Solving Wave Equation with Periodic Boundary Conditions

L1 errors of three schemes

ω L/1x 9-4-1-0(α= 36) 7-3-3-1(α= 36) 7-3-5-2 (Lele)

2 50.0 0.18 (−7) 0.11 (−7) 0.44 (−5)
4 25.0 0.49 (−5) 0.26 (−5) 0.17 (−3)
6 16.7 0.13 (−3) 0.66 (−4) 0.10 (−2)
8 12.5 0.14 (−2) 0.66 (−3) 0.41 (−2)

10 10.0 0.93 (−2) 0.39 (−2) 0.12 (−1)
12 8.3 0.41 (−1) 0.16 (−1) 0.28 (−1)
14 7.1 0.14 0.54 (−1) 0.55 (−1)
16 6.3 0.38 0.15 0.95 (−1)
18 5.6 0.73 0.31 0.15
20 5.0 0.72 0.51 0.21

Note.The results correspond to test cases of different values ofω with a fixed number
of grids N= 50 in a fixed computational domain (0, 1).L/1x is the number of grids
used to resolve one wave period in space.

A. Periodic boundary conditions.The upwind and central schemes with periodic boun-
dary conditions are tested in computing the wave equation in a fixed computational domain
(0, 1) using a fixed number of uniform gridsN = 50. For each inner scheme, twenty runs
are made using different values of wave numberω so that the effects of grid resolution on
the numerical errors of the scheme can be examined. The number of grid points used to span
a single wave length in space isL/1x, where the wave length isL = 2π/ω. The solutions
are advanced in time in more than 10 periods for long time integration. Three schemes are
used in spatial discretizations: (1) current seventh-order upwind explicit scheme 9-4-1-0
with α= 36, (2) current seventh-order upwind compact scheme 7-3-3-1 withα= 36, and
(3) fourth-order spectral-like upwind compact schemes 7-3-5-2.

Table I shows theL1 errors of the numerical solutions using the three schemes for 20
runs of differentω. Asω increases, the number of wave modes in the domain increases and
there are less grid points in resolving each wave mode. The results show that the compact
7-3-3-1 scheme is more accurate than the explicit 9-4-1-0 for the current periodic problem.
The upwind schemes 9-4-1-0 and 7-3-3-1, which have higher order formal accuracy, are
more accurate than the spectral-like 7-3-5-2 scheme for smallerω. But asω increases and
there are less grid points in resolving the waves, the spectral-like scheme becomes more
accurate. Therefore, for the wave equation with periodic boundary conditions, the spectral-
like compact schemes with reduced formal order of accuracy have better overall resolution
than standard high-order schemes in resolving a wide range of wave modes. These results
are expected because the optimized lower-order schemes were derived based on the wave
equation with periodic boundary conditions.

B. Non-periodic boundary conditions.The effect of numerical boundary schemes on
the overall accuracy in computations of the wave equation with non-periodic boundary
conditions is numerically tested. The non-periodic boundary condition is set at the left
boundary as

u(0, t) = −sin(ωπ t), t ≥ 0. (83)
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TABLE II

L1 Errors of Solving Wave Equation with Non-periodic

Boundary Conditions

e1 errors

ω L/1x 9-4-1-0(α= 36) 7-3-3-1(α= 36) 7-3-5-2 (Lele)

2 50.0 0.65 (−6) 0.54 (−6) 0.10 (−4)
31

3
30.0 0.13 (−4) 0.10 (−4) 0.66 (−4)

51
3

18.8 0.23 (−3) 0.18 (−3) 0.76 (−3)
71

3
13.6 0.15 (−2) 0.12 (−2) 0.38 (−2)

91
3

10.7 0.59 (−2) 0.53 (−2) 0.13 (−1)
111

3
8.8 0.18 (−1) 0.17 (−1) 0.35 (−1)

131
3

7.5 0.47 (−1) 0.45 (−1) 0.85 (−1)
151

3
6.5 0.11 0.11 0.20

171
3

5.8 0.26 0.28 0.54
191

3
5.2 0.97 0.92 2.2

Note.The results correspond to test cases of different values ofω with a fixed number
of grids N= 50 in a fixed computational domain (0, 1).

Similar to the previous case, the wave equation is solved in a fixed computational domain
(0, 1) using 50 uniform grid points. Twenty runs are made using different values ofω so
that the effects of grid resolution on the numerical errors of the scheme can be examined.
The values ofω are chosen such that the computational domain is not a multiple of the wave
length. The solutions are advanced in time in more than 10 periods for long time integration.
The three inner schemes in the previous case are used with the following boundary closures:
(1) explicit 5,5,5,5-7-5,5,5,5 boundary schemes for the 9-4-1-0 explicit inner scheme, (2)
compact 5,5,6-7-6,5,5 boundary schemes for the 7-3-3-1 compact inner scheme, and (3)
compact 4,4-4-4,4 boundary schemes for the spectral-like 7-3-5-2 compact inner scheme.
The fourth-order boundary schemes are used because the inner scheme is fourth-order
accurate and fifth-order boundary schemes are unstable.

Table II shows the errors of the numerical solutions using the three schemes with boundary
closures. The results show that the seventh-order upwind compact and explicit schemes are
much more accurate for smallω as expected. However, unlike the periodic case, asω

increases, the accuracy of the spectral-like scheme is about the same as the non-optimized
schemes. For this test case, the schemes of formally higher order accuracy are more accurate
in the computations of a range of wave modes. When there are less grid points in resolving
the wave modes, the spectral-like schemes do not work as well mainly due to the effects of
the boundary closures. Meanwhile, the errors of the seventh-order explicit upwind schemes
(9-4-1-0) are only slightly larger than the corresponding upwind compact scheme (9-4-1-0).

C. Grid refinements on orders of accuracy.The formal orders of accuracy of the current
upwind schemes are tested by computing the wave equation with a fixedω= 2 and three
sets of grids:N= 25, 50, 100. For a globalpth order scheme, the error should be reduced
by a factor of 2p times when grid size is reduced by half. The results are shown in Table III.
The results in the table confirm the formal orders of accuracy of the schemes. The numerical
stability also agrees with the eigenvalue analysis. The results also show that the accuracy
of the boundary closure dominates the overall accuracy of the schemes. For the 3,4-6-4,3
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TABLE III

L1 Errors of Solving Wave Equation with Non-periodic Boundary Conditions

Using Schemes with Numerical Boundary Closures

Inner schemes and B.C.’s N e1 e1(N)/e1(N/2)

Inner 7-3-3-1 (Central,α= 0) 25 0.97 (−3) —
BC 3,4,4-6-4,4,3 compact 50 0.35 (−4) 28
Order 4 100 0.25 (−5) 14
Inner 7-3-5-2 (Central, Lele’s Spectral-Like) 25 0.65 (−4) —
BC 4,4,4-4-4,4,4 compact 50 0.10 (−4) 63
Order 4 100 0.33 (−6) 31
Inner 5-2-3-1 (Upwind,α=−1) 25 0.11 (−3) —
BC 4,4-5-4,4 compact 50 0.35 (−5) 32
Order 5 100 0.11 (−6) 32
Inner 7-3-1-0 (Upwind,α=−6) 25 0.12 (−3) —
BC 4,4,4-5-4,4,4 explicit 50 0.40 (−5) 31
Order 5 100 0.13 (−6) 31
Inner 7-3-3-1 (Upwind,α= 36) 25 0.40 (−4) —
BC 5,5,5-7-5,5,5 explicit 50 0.64 (−6) 63
Order 6 100 0.10 (−7) 64
Inner 9-4-1-0 (Upwind,α= 36) 25 0.47 (−4) —
BC 5,5,5,5-7-5,5,5,5 explicit 50 0.65 (−6) 73
Order 6 100 0.10 (−7) 64

Note.For each scheme, three sets of gridsN are used in a fixed computational domain.

central compact scheme, the result is less accurate than the upwind 4,4-5-4,4 schemes
because the central scheme is only third-order accurate.

Therefore, the numerical experiments on the linear wave equation confirm the accuracy
and stability of the new high-order upwind schemes. The fourth-order spectral-like opti-
mized compact scheme has better overall resolution than sixth-order upwind schemes for
periodic problems. But the spectral-like scheme, which uses a wider grid stencil, is not
as accurate as higher-order upwind schemes when boundary closure schemes are used in
non-periodic computational domains. These results suggest that for non-periodic flow sim-
ulations, it is not worthwhile to lower the order of accuracy of the schemes in order to have
better resolution at high wave numbers in the inner schemes, because boundary closure
schemes cannot be included in the derivation of the optimized schemes.

Stability of 2-D Supersonic Couette Flow

Compressible Couette flow is a shear flow bounded by two parallel walls. While steady
solutions are one-dimensional functions of wall-normal coordinatey, the amplification
and decay of disturbances are two- and three-dimensional transient flows. The disturbance
amplification or decay at finite Reynolds numbers can be analyzed by a normal-mode linear
stability analysis, which solve for weak perturbations in the form

q′ = Re
{

q̂(y) ei (αx−ωt)
}
, (84)

whereq′ represents perturbations of any flow variables,q̂(y) is the complex amplitude
function of the perturbations,α is the wavenumber inx direction, andω is the frequency of
the disturbance waves. In the temporal linear stability analysis,ω is solved as an eigenvalue
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FIG. 11. Variation of the steady base flow temperature profile for adiabatic lower wall withM∞ = 2. The
numerical solution is obtained using a fifth-order upwind scheme using 121 grid points.

of the homogeneous boundary value problem for a given real value ofα,

ω = ω(α,Re,M∞). (85)

The real part ofω, Re{ω}, represents the frequency of the disturbance modes, while the
imaginary part, Im{ω}, represents the temporal amplification rate of the disturbances. When
Im{ω} is greater, equal to, or smaller than 0, a disturbance mode is unstable with finite
amplification, neutrally stable, or stable with finite damping, respectively.

In this section, the current fifth-order upwind schemes are used to compute supersonic
Couette flow atM∞ = 2 in solving the nonlinear Navier–Stokes equations for both steady
and unsteady solutions. The unsteady numerical solutions are compared with the linear
stability solutions of a supersonic Couette flow obtained by Hu and Zhong in [49]. The upper
wall is an isothermal wall while the lower wall is an adiabatic wall. The gas is assumed to
be a perfect gas withγ = 1.4 andPr= 0.72. The viscosity coefficient is calculated using
Sutherland’s law. The flow variables are nondimensionalized by their corresponding values
at the upper wall.

A. Steady flow solutions.The fifth-order explicit upwind schemes are used to compute
the Navier–Stokes equations withα=−1 for the supersonic Couette flow. The steady solu-
tions are compared with analytical solutions obtained by a shooting method which is several
order of magnitudes smaller in numerical errors [49]. The numerical simulation is conducted
using several sets of uniform grids in order to evaluate the accuracy of the algorithm.

Figure 11 shows the steady temperature profile obtained by using a fifth-order upwind
scheme with 121 uniform grid points. The numerical results agree well with the exact
solutions. The numerical errors of the steady flow simulations using the three sets of grids
are listed in Table IV. The numerical errors for the fifth-order upwind scheme are of the
order of 10−6 using 31 grid points and 4.0× 10−7 using 61 grid points. The theoretical
ratio of the errors between the coarse and the fine grids is 32 for a fifth-order scheme. The
numerical results in the table show that the numerical algorithms are able to maintain such
high orders of accuracy.

B. Unsteady flow solutions.The fifth-order upwind scheme is applied to the unsteady
supersonic Couette flow for the development of initial disturbances to the mean flow. The
initial conditions are the steady flow solutions plus disturbances obtained by the linear
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TABLE IV

Numerical Errors for Computations of Steady Supersonic

Couette Flow Using a Fifth-Order Upwind Scheme for the

Navier–Stokes Equations

Grids α ‖e‖1 Ratio ‖e‖2 Ratio

31 −1 6.5 (−7) — 1.7 (−7) —
61 −1 2.4 (−8) 27 4.2 (−9) 40

stability analysis in the form of Eq. (84). The subsequent unsteady flow field is obtained
by computing the nonlinear Navier–Stokes equations using the fifth-order upwind scheme.
The same stretched grids as those used in the linear stability calculations [49] are used in the
numerical simulations. The computational domain in the simulation is one period in length
in thex direction. Periodic boundary conditions are used in thex direction. The Reynolds
number isRe∞= 1000. The initial disturbance wave has a dimensionless wave number of
α= 3, and the eigenvalue obtained from the temporal linear stability analysis is

ω = 5.52034015848− 0.132786378788i, (86)

where a negative Im{ω} means that the disturbances decay in time with a dimensionless
frequency of Re{ω}.

Figure 12 shows the time history of the velocity perturbations at a fixed point in the two-
dimensional supersonic Couette flow. The DNS results are compared with the linear stability
prediction. The computation uses a 40× 100 grid. The figure shows that the instantaneous
perturbations of the flow variables for the two-dimensional numerical simulations of the

FIG. 12. Time history of velocity perturbations at a fixed point in the two-dimensional supersonic Couette
flow field (linear stability theory,δu0 andδv0; DNS,δu andδv).
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FIG. 13. Distribution of instantaneous flow perturbations iny direction in unsteady two-dimensional super-
sonic Couette flow.

nonlinear Navier–Stokes equations agree very well with the linear stability analysis.
Figure 13 shows the distributions of instantaneous flow perturbations in they direction
at the end of about six periods in time. Again, the DNS results agree very well with the
linear stability results. Grid refinements studies have also been performed and the results
validate the fifth-order accuracy of the upwind scheme used in the calculations of the two-
dimensional Navier–Stokes equations.

The amplitudes of the disturbance waves decay as a function of time. For sufficiently low
amplitude waves, linear stability analysis shows that the perturbation kinetic energy of the
solutions is

E(t) =
∫ ∫

1

2
(u′2+ v′2) dx dy= E0 e2ωi t , (87)

where E0 is the perturbation energy att = 0. Figure 14 displays the time history of
ln(E(t)/E0) for the numerically computed perturbation energy and the analytical value
of the linear stability analysis in one wave period. Different number of gridpoints in the y
direction are used to study the numerical accuracy of the simulations. The numerical results
using 100 gridpoints in the y direction agree very well with the linear stability results.
However, the numerical errors are accumulated in time when lesser number of gridpoints,
30 and 20 gridpoints, are used in the y direction.

Steady Hypersonic Viscous Flow over a Cylinder

After validation without the shock-fitting procedure, the new fifth-order upwind scheme
(7-3-1-0 withα=−6) coupled with the shock-fitting procedure is then applied to the com-
putations of steady two-dimensional hypersonic viscous flow over a cylinder, where there
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FIG. 14. Computed decay rate of perturbation energy for a fifth-order upwind scheme by using three sets
of grids in the y direction compared with linear stability analysis results in 2-D supersonic Couette flow field
(M∞ = 2.0, Re= 1000).

is a bow shock in front of the body. Experimental results and accurate numerical solutions
obtained by a shock-fitting spectral method [50] are available for comparison. The flow con-
ditions areM∞= 5.73,Re∞= 2050, T∞= 39.6698 K,Tw = 210.02 K,γ = 1.4,Pr= 0.77,
and cylinder radiusr = 0.0061468 m.

Figure 15 shows a set of 80× 60 grids used in the shock-fitting calculations. The grids
are stretched in both the streamwise and wall-normal directions. Figure 16 compares the
computed temperature contours for flow over a circular cylinder. The results of the cur-
rent fifth-order upwind shock-fitting scheme compare very well with those of the spectral

FIG. 15. Computational grid for viscous hypersonic flow over a circular cylinder.
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FIG. 16. Comparison of computed temperature contours for flow over a circular cylinder. The upper half
contours are taken from Kopriva [50], and the lower half contours are computed by a fifth-order upwind shock-
fitting scheme using a 80× 60 grid.

method of Kopriva [50]. The pressure coefficients along the cylinder surface computed by
the fifth-order shock-fitting methods are compared with experimental results and spectral
results [50] in Fig. 17. Again, the solutions of the Navier–Stokes equations obtained by
the current fifth-order upwind scheme agree well with the spectral-method results. The
differences between the numerical results and the experiments, which are consistent with
other numerical results, may be due to the differences in flow conditions between the ex-
periments and the simulation. The grid convergence of the results are tested by refining
the grids used for the simulation. Figure 18 compares the the surface pressure coefficients
along the surface for three sets of grids and shows that the results are highly accurate for
relatively coarse grids.

7. HYPERSONIC BOUNDARY-LAYER RECEPTIVITY SIMULATIONS

The new fifth-order upwind shock-fitting scheme (7-3-1-0 withα=−6) is applied to the
numerical simulation of boundary-layer receptivity to freestream acoustic disturbances for
hypersonic flow past a parabolic leading edge at zero angle of attack. Perfect gas assumption
is used for the flow. The hypersonic receptivity phenomena and the descriptions of the flow
conditions of the simulations can be found in [51]. The fifth-order upwind shock-fitting
scheme is used to discretize the equations in the non-periodic streamwise and wall-normal
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FIG. 17. Comparison of pressure coefficients along a cylinder surface.

directions. A Fourier spectral collocation method is used to discretize the equations in
the periodic spanwise direction. In the shock-fitting algorithm, the derivatives of the shock
shapeHξ , Hζ , Hτξ , andHτζ are needed. They are numerically evaluated using a sixth-order
compact central scheme shown in Eqs. (37) to (41). The spatially discretized equations are
advanced in time using an explicit Runge–Kutta scheme [42] for the perfect gas flow. Grid
refinements are used to ensure that both steady and unsteady solutions are grid independent.

In the simulations, two-dimensional steady flow solutions are first obtained with no
freestream disturbances. Subsequently, the two-dimensional or three-dimensional free-
stream disturbances are superimposed on the basic flow solutions in front of the bow shock.
The shock/disturbance interactions and generation of T-S waves in the boundary layer
are simulated by solving the nonlinear Navier–Stokes equations in the two-dimensional
or three-dimensional flow fields. The freestream disturbances are assumed to be weak
monochromatic planar acoustic waves with wave front oblique to the center line of the

FIG. 18. Comparison of pressure coefficients along a cylinder surface. The results are obtained using three
sets of grids.
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body in thex-z plane. The perturbations of flow variables in the freestream introduced
by the freestream acoustic waves before reaching the bow shock can be written in the
form

q′∞ = |q′|∞ ei (k cosψx+k sinψz−ωt), (88)

where|q′| represents one of the flow variables,|u′|, |v′|, |w′|, |p′|, and |ρ ′|. Freestream
acoustic perturbation amplitudes satisfy the following relations:|u′|∞ = ε cosψ, |v′|∞ = 0,
|w′|∞ = ε sinψ, |p′|∞ = γM∞ε, and|ρ ′|∞ =M∞ε. The parameterε represents the free-
stream wave magnitude. The angleψ is the angle of freestream wave with respect to the
x axis in thex-z plane, whereψ = 0 corresponds to two-dimensional planar waves. The
parameterk is the dimensionless freestream wave number which is related to the dimen-
sionless circular frequencyω by ω= k(cosψ + M−1

∞ ). The dimensionless frequencyF is
defined asF =ω∗ν∗/U ∗2∞ × 106. The body surface is a parabola given byx∗ = b∗y∗2− d∗,
whereb∗ is a constant andd∗ is taken as the reference length. A flow variable with a super-
script∗ is a dimensional variable, while dimensionless flow variables are denoted by the
same dimensional notation but without the superscript∗.

The flow and geometric conditions areM∞= 15,Re∞= 6026.6,T∗∞ = 192.989 K, p∗∞ =
10.3 Pa,T∗w = 1000 K,γ = 1.4, b∗ = 40 m−1, d∗ = 0.1 m, and the nose radius of curvature
r ∗ = 0.0125 m. The body surface is assumed to be a non-slip wall with an isothermal wall
temperatureT∗w .

Boundary conditions for flow variables at the wall surface, in the freestream, and in the
exit boundary are needed for both steady and unsteady and unsteady flow simulations of
the hypersonic receptivity problem. At the wall surface, the velocity is specified by the
non-slip condition, the temperature is given by an isothermal condition, and the pressure
is determined by a high-order polynomial extrapolation from the interior flow field. In the
freestream, the steady or unsteady flow variables are specified in the calculations. The flow
variables behind the bow shocks are then calculated without any linearization by the shock
fitting algorithm described in this paper. At the exit boundary, the flow is supersonic outside
of the boundary layer and is mainly parabolic inside the subsonic boundary layer. For such
flow, a simple high-order polynomial extrapolation is used to determine the flow variables
at the exit boundary. In order to ensure that such a boundary condition does not produce
spurious reflection of numerical noise back to the upstream of the computational flow fields,
the simulations of the steady and unsteady flow for the receptivity problem are carried out
using two successive overlap computational zones similar to those shown in Fig. 28. The
steady or unsteady solutions in Zone 1 are first computed until the solutions reach a steady
state or time periodic state (for unsteady flows). Having finished the simulation in Zone 1,
the simulations in Zone 2 are carried out using the solutions from Zone 1 as boundary
conditions at the inlet. The use of the overlap-zone approach provides a way to evaluate
the magnitudes of possible numerical wave reflection at the exit boundary. If there is no
spurious numerical reflection at the exit boundary, the solutions from the two zones in the
overlap region should agree with each other. The comparison of the results in the overlap
region shows that the wave reflections at the exit boundary for the present test cases are
negligible at the exit of Zone 1.

Steady Mean-Flow Solutions

Steady two-dimensional solutions of the Navier–Stokes equation for hypersonic flow over
the parabola are obtained by advancing the solutions to a steady state without freestream
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FIG. 19. Base flow solutions for a computational grid (upper figure) where the bow shock shape is obtained
as the numerical solution for the freestream grid line, velocity vectors (middle figure), and entropy contours (lower
figure).

perturbations. Figure 19 shows steady flow solutions for a set of 160× 120 computational
grid, velocity vectors, and steady entropy contours. The bow shock is obtained as the solution
for the freestream grid line. The velocity vector plot in the figure shows the development
of the boundary layer along the surface. The entropy contours show the entropy layer
developing at the edge of the boundary layer. The swallowing of the entropy layer by the
boundary layer has been shown to play an important role in the stability and transition of
the boundary layer downstream [12].
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FIG. 20. Comparisons of steady pressure(p) and vorticity(ω) profiles behind the bow shock and on body
surface obtained by two set of grids (circles, 160× 120 grid; lines, 320× 240 grid).

The accuracy of the numerical resolution of the mean flow using the 160× 120 grid
is evaluated by comparison with finer 320× 240 grid solutions. Figure 20 compares the
pressure and vorticity profiles behind the bow shock shape and on the body surface. The
two sets of solutions agree very well with each other, which indicates that the steady solutions
are well resolved by these grids.

Boundary layer stability is strongly dependent on the variation of steady flow tempera-
ture and velocities along the wall-normal grid lines, and their first and second derivatives.
Figure 21 shows the variation of base flow tangential nondimensional velocity (u), its first
derivative (du

dy), and second derivative (d2u
dy2 ) along a grid line normal to the parabola surface

at a grid station. The grid refinements show that these steady solutions are grid independent.
This figure also shows that the flow distribution across the boundary layer for the present
test case is very different from a hypersonic boundary layer over a flat plate. Specifically,
the velocities do not reach constant asymptotic states outside the boundary layer. Therefore,
it is expected that the stability properties will be different from those obtained from a LST
analysis which is based on parallel base flow assumptions.
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FIG. 21. Variation of base flow tangential velocity(u), its first derivative( du
dy
), and second derivative( d2u

dy2 )

along a grid line normal to the wall surface at thex=−0.14 grid station.
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Receptivity to 2-D Disturbance Waves

After obtaining the steady basic flow solutions, the unsteady flow solutions are com-
puted using the new fifth-order upwind scheme by imposing acoustic disturbances to the
basic flow in the freestream. Figure 22 shows the contours of instantaneous temperature
perturbationT ′, the Fourier amplitude|T ′|, and the phase angleϕT after the solutions
reach a periodic state for the case of freestream forcing frequencies ofF = 2655 and
ε= 5× 10−4. The numerical solutions are obtained by using the 160× 120 grids. The
instantaneous contours show the development of instability waves in the boundary layer
on the surface. In general, the disturbance field between the shock and the body surface
is a combination of the external forcing disturbance waves and the T-S waves generated
in the boundary layer. Figure 22 shows very clearly the development of instability waves
in the boundary layer along the surface because the instability waves are dominant in
the boundary layer near the surface. Meanwhile the waves immediately behind the bow
shock are mainly external forcing waves. On the body surface, both first and second mode
waves are generated and propagated downstream along the wall. The first mode is gen-
erated near the leading edge (x< 0.2). The amplitudes of the first mode are amplified
first and then decrease rapidly after reaching maximum values. After the first-mode de-
cay, the second-mode disturbances become the dominant mode. The decay of the first
mode and the growth of the second mode atx≈ 0.2 are shown by a sudden change of
phase angles near the body surface at that location. The phase structure changes dra-
matically between the two modes; specifically the second mode has one more variation
across the boundary layer. The phase angle structure develops discontinuity lines across the
boundary layer as the higher modes develop. The contours of the Fourier amplitudes also
show the switching of instability modes from region 1 to region 2 at aboutx= 0.2 on the
surface.

Again, a grid refinement is used to check the numerical resolution of the 160× 120 grids
for unsteady DNS simulations. Figure 23 shows the distribution of the Fourier amplitudes of
the entropy perturbations along the body surface. The two distinct main regions of instability
waves are clearly shown. The variation of perturbation amplitudes of velocity|u′| along a
grid line normal to parabola surface atx= 0.239 is shown in Fig. 24. These two figures show
that the unsteady solutions obtained by using two sets of grids, 320× 240 and 160× 120
grids, agree very well with each other. The unsteady solutions are well resolved by the grids
used in the calculations.

Local linear stability theory (LST) is used to identify the boundary layer eigenmodes and
to analyze the instability mechanism and the bow-shock effects [52]. The LST is used to
obtain instability modes based on the numerically obtained basic flow between the body
and the bow shock. Figure 25 shows the first-mode eigenfunction amplitudes along the
wall-normal direction atx= 0.5521 for the case of freestream forcing frequencyF = 1770
andε= 5× 10−4. The DNS results agree very well with LST results inside the boundary
layer. The disagreement outside the boundary layer near the bow shock is expected because
the effects of the forcing disturbances are not included in the linear stability analysis.

For weak monochromatic freestream forcing waves, the generation of instability waves
is expected to be linear with respect to the forcing amplitudes. Receptivity and stability
experiments [9] have shown the existence of high harmonics in addition to the waves of
the fundamental frequency. Nonlinear higher harmonics are also found in the present DNS
studies. Figure 26 shows the instantaneous entropy disturbances along the body surface for



         

FINITE-DIFFERENCE SCHEMES 701

FIG. 22. Unsteady temperature perturbation contours for the case of 2-D freestream acoustic wave of
F = 2655: instantaneous perturbationsT ′ (upper figure), Fourier amplitude|T ′| (middle figure), and Fourier
phase angleϕT (in degrees) (lower figure).



        

702 XIAOLIN ZHONG

FIG. 23. Unsteady flow solutions atF = 2655 for the distribution of the amplitudes of the entropy perturbations
along the body surface.

FIG. 24. Unsteady flow solutions for the case ofF = 2655 for variation of|u′| along a grid line normal to
parabola surface atx= 0.239 (line, 320× 240 grid; circles, 160× 120 grid).
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FIG. 25. First-mode eigenfunction amplitudes along the wall-normal direction atx= 0.5521(F = 1770).

FIG. 26. Instantaneous entropy disturbances along the body surface for the case ofF = 1770(n= 1, funda-
mental mode;n= 2, second harmonic).
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FIG. 27. Time history of the instantaneous pressure perturbation at the point immediately behind the bow
shock at the center line for the case ofk= 40.

the case ofF = 1770 andε= 5×10−4 for the fundamental frequency (n= 1) and their second
harmonic (n= 2). The analysis of the results shows that receptivity of the fundamental modes
is governed by a linear mechanism, while the second harmonic is nonlinear.

In the unsteady simulations, the bow shock oscillates due to freestream disturbances and
the reflection of acoustic waves from the boundary layer to the shock. It is important that the
numerical simulation using the shock-fitting scheme resolves the unsteady shock motion
accurately. The current high-order shock-fitting method is found to be able to compute the
unsteady flow fields and the unsteady shock motion very accurately. A simple way to check
the accuracy of the numerically computed unsteady shock/disturbances interaction by the
shock-fitting scheme is shown in Fig. 27, which shows the time history of the instantaneous
pressure perturbation at the point immediately behind the bow shock at the center line
for the case ofk= 40. In the initial moment of imposing the freestream disturbances,
there are no reflected waves from the undisturbed steady boundary layer. The freestream
disturbance wave transmission relation can be predicted by linear theory such as that derived
by Mckenzie and Westphal [53]. At a later time, the wave pattern changes because the
disturbance waves enter the boundary layer and generate reflected waves back to the shock.
The figure shows very good agreement between DNS and linear predictions on the pressure
perturbation due to freestream disturbances.

Receptivity to 3-D Disturbance Waves

The receptivity of the hypersonic boundary layer to oblique three-dimensional freestream
acoustic waves for the same two-dimensional basic flow has also been studied by DNS.
Figure 28 shows the three-dimensional shock fitted grids using two computational zones
resolved by 160× 120× 16 and 200× 120× 16 grids, respectively. The unsteady flow
fields are generated by imposing an oblique freestream disturbance at an angle ofψ = 45◦

with wave amplitude ofε= 5× 10−3 and F = 1770. Figure 29 shows the contours of
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FIG. 28. Computational grid for three-dimensional hypersonic boundary layer receptivity to freestream
oblique disturbance waves using two overlap zones.

FIG. 29. Instantaneousv′ contours for the receptivity to freestream disturbances for a three-dimensional
hypersonic boundary layer over a parabolic leading edge.
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instantaneous perturbationv′ after the flow field reaches a periodic state. The instantaneous
contours ofv′ show the development of three-dimensional first-mode waves in the boundary
layer on the surface. The second mode region is also generated near the end of computational
Zone 1. The figure shows similar trends as two-dimensional wave developments, i.e., the
first-mode amplification near the leading edge and the second-mode dominant downstream.

8. CONCLUSIONS

This paper has presented a family of high-order compact and explicit upwind finite-
difference schemes and a shock-fitting method for the DNS of hypersonic flows over blunt
bodies. The accuracy and the stability of the schemes have been tested and applied to
numerical simulations of the linear wave equation and nonlinear Navier–Stokes equations.
The numerical experiments and applications have shown that the current high-order shock-
fitting schemes are highly accurate for hypersonic boundary layer DNS studies. Specific
conclusions are listed below.

(1) The numerical experiments confirm the accuracy and stability of the current high-
order upwind schemes. They are stable with high-order boundary closure schemes and
their dissipation errors are smaller than conventional upwind schemes using upwind-bias
stencils.

(2) The new fifth-order shock-fitting schemes have been applied to the DNS studies
of the receptivity of a hypersonic boundary layer to freestream acoustic disturbances. It
is found that both first and second mode waves are generated in the hypersonic boundary
layers. The first mode is always generated near the leading edge and is amplified before
decaying rapidly. The second mode is the dominant mode after the first mode decay. The
eigenfunctions of the first mode obtained by DNS agree well with the LST results. The DNS
also shows that the generation of instability modes of the fundamental forcing frequency
are linear, and the receptivity also generates nonlinear superharmonics.

(3) As a byproduct of the numerical experiments, a fourth-order spectral-like central
compact scheme has also been compared with current upwind schemes. It is found that the
spectral-like compact scheme has better overall resolution than sixth-order upwind schemes
for periodic problems. But the spectral-like scheme is not as accurate as higher-order non-
optimized schemes when boundary closure schemes are used in non-periodic computational
domains.

APPENDIX: OTHER UPWIND SCHEMES

Third-Order Compact Schemes

bi−1u′i−1+bi u
′
i +bi+1u′i+1 =

1

h
(ai−1ui−1+ai ui +ai+1ui+1)− α

4!
h3

(
∂u4

∂4x

)
i

+· · · , (89)

whereai±1=±45− 30α, bi±1= 15∓ 15α,ai = 60α,andbi = 60. The 3-1-3-1 schemes are
third-order upwind whenα >0, and are fourth-order central whenα= 0. The recommended
value forα is α= 1/4.

Third-Order Explicit Schemes

u′i =
1

hbi

2∑
k=−2

ai+kui+k − α

4!bi
h3

(
∂u4

∂4x

)
i

+ · · · , (90)
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whereai±2=∓5+ 5
2α,ai±1=±40− 10α,ai = 15α, andbi = 60. The 5-2-1-0 schemes

are third-order upwind whenα >0, and they are fourth-order central whenα= 0. The
recommended value forα is α= 1/4.

Seventh-Order Compact Schemes

bi−1u′i−1+ bi u
′
i + bi+1u′i+1 =

1

h

3∑
k=−3

ai+kui+k − α

8!
h7

(
∂u8

∂8x

)
i

+ · · · , (91)

whereai±3=∓ 1
8+ 1

96α,ai±2=±3− 1
6α,ai±1=± 375

8 − 65
96α, bi±1= 45

2 ∓ 5
8α,ai = 5

3α, and
bi = 60. These 7-3-3-1 schemes are seventh-order upwind compact schemes whenα >0,
and are a eighth-order central compact scheme whenα= 0. The recommended value forα
is α= 36.

Seventh-Order Explicit Schemes

u′i =
1

hbi

4∑
k=−4

ai+kui+k − α

8!bi
h7

(
∂u8

∂8x

)
i

+ · · · , (92)

whereai±4=∓ 3
14+ 1

672α,ai±3=± 16
7 − 1

84α,ai±2 = ∓12+ 1
24α,ai±1 = ±48− 1

12α,ai =
5
48α, andbi = 60. These 9-4-1-0 schemes are seventh-order upwind explicit schemes when
α >0, and are a eighth-order central explicit scheme whenα= 0. The recommended value
for α is α= 36.

For the seventh-order upwind compact (7-3-3-1) and explicit (9-4-1-0) schemes, it is
desirable that the boundary schemes are sixth-order accurate so that the overall schemes
are seventh-order accurate. However, the required damping parametersα for stability are
too large (in the range of 104) for both schemes. Such large values ofα will lead to very
large numerical dissipation errors. Therefore, the requirement of the order of boundary
schemes for the seventh-order inner schemes is reduced to fifth-order in order to obtain
stable boundary closure at reasonable value of damping coefficientα. The corresponding
schemes are 5,5,5-6-5,5,5 for compact schemes and 5,5,5,5-6-5,5,5,5 for explicit schemes.
The formal global order of accuracy of the seventh-order interior schemes with fifth-order
boundary closure are formally sixth-order accurate. The upwind schemes are stable with
α= 36 for both schemes.
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