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Direct numerical simulation (DNS) has become a powerful tool in studying fun-
damental phenomena of laminar-turbulent transition of high-speed boundary layers.
Previous DNS studies of supersonic and hypersonic boundary layer transition have
been limited to perfect-gas flow over flat-plate boundary layers without shock waves.
For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition
need to consider the effects of bow shocks, entropy layers, surface curvature, and
finite-rate chemistry. Itis necessary that numerical methods for such studies are robust
and high-order accurate both in resolving wide ranges of flow time and length scales
and in resolving the interaction between the bow shocks and flow disturbance waves.
This paper presents a new high-order shock-fitting finite-difference method for the
DNS of the stability and transition of hypersonic boundary layers over blunt bodies
with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The
proposed method includes a set of new upwind high-order finite-difference schemes
which are stable and are less dissipative than a straightforward upwind scheme using
an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order
semi-implicit Runge—Kutta schemes for temporal discretization of stiff reacting flow
equations. The accuracy and stability of the new schemes are validated by numerical
experiments of the linear wave equation and nonlinear Navier—Stokes equations. The
algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers
over a parabolic leading edge to freestream acoustic disturbanses Academic press

1. INTRODUCTION

The prediction of laminar-turbulent transition of hypersonic boundary layers is criti
to the accurate calculations of drag and thermal loads to hypersonic vehicles [1]. FigL
shows a schematic of a generic hypersonic lifting vehicle with boundary-layer transit
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FIG. 1. A schematic of a generic hypersonic lifting vehicle with boundary-layer transition.

In general, transition is a result of nonlinear response of laminar boundary layers to for
disturbances [2, 3], which can originate from freestream acoustic, turbulent, or entropy
turbances, or from disturbances induced by surface roughness or surface vibrations.
environment with small initial disturbances, the path to transition consists of three sta
(2) receptivity, (2) linear eigenmode growth, and (3) nonlinear breakdown to turbuler
The receptivity process [4] converts the environmental disturbances into boundary-laye
stability waves, and provides important initial conditions of amplitude, frequency, and ph
for boundary-layer instability waves [5]. The second stage is the linear eigenmode grow
boundary-layer instability waves. The relevant wave modes for hypersonic boundary |la
are the first mode and second (acoustic) mode [6], il & instabilities [7] over concave
surfaces, and the three-dimensional cross flow instabilities [8]. It has been shown [6, 9]
both the first and the second mode instabilities are simultaneously present in hyper:
boundary layers where the second mode is most unstable at high Mach numbers. The
stage is the breakdown of linear instability waves and transition to turbulence after the li
growth of instability waves reaches certain magnitudes [10].

Compared with low-speed boundary layers, the transition of hypersonic boundary la
over blunt bodies is affected by the additional effects of bow-shock interactions, nose bl
ness, entropy layer instabilities, and thermo-chemical nonequilibrium at high temperatt
Figure 2 shows a schematic of wave fields in a hypersonic flow induced by freestream
turbances. Kovasznay [11] showed that weak disturbance waves in compressible flov
be decomposed into three independent acoustic, entropy, and vorticity modes. Frees
disturbances are processed by the bow shock before entering the boundary layer. Irre
tive of the nature of the freestream disturbance modes, their interaction with the bow sl
always generates all three types of wave modes, which propagate downstream and in
with the boundary layer over the body surface. The boundary layer also generates refl
acoustic waves impinging on the shock from behind and generating further disturba
to the shock. In addition, an entropy layer is created by the curved bow shock. The s
lowing of the entropy layer by the boundary layer has been shown to have strong ef
on the stability and transition of the boundary layer downstream [12] further downstre
Therefore, itis necessary to include the effects of the bow shock in the studies of hyper:
boundary-layer transition.

This paper is concerned with finite-difference methods for the DNS of stability &
transition of hypersonic boundary layers over blunt bodies. In DNS studies, boundary-|
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FIG. 2. A schematic of the wave field of hypersonic boundary layer receptivity to freestream disturbance

transition [13] is simulated by numerically solving the three-dimensional Navier—Stol
equations for the development of disturbance waves in the boundary layers. Highly acc
numerical methods are needed in order to resolve a wide range of flow time and length st
Due to the advances in numerical methods and rapid increases in memory capacit
computational speeds of available computers, DNS has become a powerful tool in the
of flow phenomena of the stability and transition of boundary layers [13], especially in
DNS of incompressible boundary layer stability and transition [14—21]. For compress
boundary layers over a flat plate, Erlebackieal.[22, 23] studied the secondary instability
mechanism by temporal and spatial simulations. Thushal. [24] and Eibler and Bestek
[25] performed spatial DNS of the obligue mode breakdown in supersonic boundary la:
over flat plates. Adams and Kleiser [26] and Getal. [27] studied the subharmonic
breakdown process at a freestream Mach number of 4.5 by temporal and spatial simula
Pruettet al.[28, 29] conducted temporal and spatial DNS studies of laminar breakdowr
high-speed axisymmetric boundary layers over a hollow cylinder and a sharp cone.
These previous DNS studies of supersonic boundary layers were limited to perfect
flow over flat-plate boundary layers without shock waves. For hypersonic boundary la)
over realistic blunt bodies, the DNS studies need to consider the effects of bow shc
entropy layers, surface curvature, and finite-rate chemistry. The numerical method:
such studies need to be robust, high-order accurate, and able to solve the bow shock o
tions. This paper presents new high-order upwind finite-difference shock-fitting scheme
the direct numerical simulation of hypersonic flows with strong bow shocks and with
without) stiff chemical source terms. A new set of upwind high-order finite-differen:
schemes is proposed for the accurate and stable spatial discretization of flow eque
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behind the bow shocks. A shock-fitting formulation is used so that the high-order sche
can be used to compute unsteady shock motions and its interaction with the transient
without introducing spurious numerical oscillations in the solutions. The resulting syster
ordinary differential equations is advanced in time using third-order semi-implicit Runc
Kutta schemes [30] for stiff reacting flow equations or by regular explicit Runge—Ku
schemes for non-stiff equations. These three aspects of the numerical method are disc
further below.

High-Order Upwind Finite-Difference Schemes

The traditional numerical methods for the DNS of transitional and turbulent flows h:
been the spectral methods because of their high accuracies. But the applications ¢
spectral methods have been limited to flows in simple domains. Several alternative nume
methods have been used for DNS of transitional and turbulent flows in general geome
Examples are the spectral element methods [31], high-order compaej {ipéd-difference
methods [32], and high-order non-compact (explicit) finite-difference methods [18].

Finite-difference methods have recently received much attention for the DNS of ti
sitional and turbulent flows [17, 18, 26, 29, 32] because they can be easily applie
complex geometries. Finite-difference schemes include both traditional explicit sche
and compact [32] schemes. High-order schemes are required because traditional se
order schemes do not have an adequate accuracy level for the direct numerical simul
Most high-order finite-difference methods used in direct numerical simulation are cer
difference schemes [29, 32] which introduce only phase errors but no dissipative erro
numerical solutions. The drawback of central schemes is that they are not robust en
for convection dominated hypersonic flow simulations. Extra filtering procedures, wh
are equivalent to adding numerical dissipation in an ad hoc manner, are needed in |
to stabilize the computations and control the aliasing errors. For example, central di
ence schemes of fourth order or higher are unstable when they are coupled with high-
boundary schemes using one-sided finite-difference approximations [29, 33]. Carpe
et al. [33] showed that for a sixth-order inner central compact scheme, only a third-or
boundary scheme can be used without introducing instability. This results in a glob
fourth-order accurate scheme even though the inner scheme is sixth-order accurate.

On the other hand, Rai and Moin [18] showed that upwind-bias schemes are very rc
even when they are made high-order accurate. They used a spatially fifth-order up
finite-difference scheme using an upwind-bias stencil for the Navier—Stokes equati
The numerical dissipation in the upwind-bias schemes is enough to control the alia
errors. In recent years, many other upwind high-order schemes have also been devel
Tolstykh [34] proposed a fifth-order compact upwind scheme for moisture transport eque
in atmosphere. Christie [35] proposed a fourth-order compact upwind scheme bec
the standard central compact schemes break down in convection dominated prob
Zingget al.[36] tested the accuracy of a fifth-order explicit upwind finite-difference scher
with built-in filtering terms in a central grid stencil for linear wave propagation problen
Sjogreen [37] used explicit numerical damping to stabilize high-order finite-differer
equations for the Navier—Stokes equations. Adams and Shariff [38] proposed fifth-o
upwind compact schemes with spectral-like resolution using central grid stencils for
direct numerical simulation of shock-turbulence interaction.

This paper presents a family of upwind compact and explicit finite-difference schet
of third, fifth, and seventh-order and their stable high-order boundary schemes for the |
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of hypersonic boundary-layer transition. The main idea is to derive the upwind sche
so that the dissipative errors are smaller than the dispersive errors inherent in equiv
central schemes and are large enough to stabilize high-order inner schemes couple
boundary closure schemes. Fourier analysis is used to analyze the dissipation and

errors, and an asymptotic stability analysis is used to determine the stability of the i
schemes coupled with boundary conditions. Specifically, central grid stencils are use
the upwind schemes with adjustable built-in numerical dissipation. The orders of accu
of the upwind schemes are one-order lower than the maximum orders the central ste
can achieve so that there is an adjustable coefficient in the leading dissipative trunc
term. The free parameters are then determined so that the resulting upwind schemes ¢
dissipation-error and stability conditions. The current upwind schemes are similar to
upwind schemes of Zinggt al. [36] and those of Adams and Shariff [38]. But they are
more general and systematic in derivation and analysis.

High-Order Shock-Fitting Method

For the DNS of hypersonic flow over blunt bodies, high-order linear schemes car
be used for grid points across the bow shock fronts with steep gradients because spt
numerical oscillations are generated at the shocks. Many high-resolution shock captt
schemes, such as the TVD and ENO [39] schemes, have been developed to capture
waves as part of the numerical solutions without numerical oscillations. These shock ca
ing schemes are adequate for aerodynamic calculations, but they are not accurate enot
DNS studies, where short wave-length shock/disturbance interactions need to be res
with high accuracy.

For DNS of hypersonic boundary layers, the bow shocks can be treated as a com
tional boundary using the shock-fitting method [40]. The use of the shock-fitting mett
makes it possible to apply high-order linear schemes for spatial discretization of the 1
equations behind the bow shocks. Hussaeiril.[40] used the shock-fitting spectral methoc
to simulate shock/turbulent interaction. Cai [41] used a shock-fitting method to comg
two-dimensional detonation waves. The interactions between the bow shocks and d
bance waves are resolved by the shock-fitting method without generating numerical
rious oscillations. This paper presents a high-order shock-fitting formulation for the D
of three-dimensional hypersonic boundary layers with unsteady bow shocks. The cu
formulation is simple because the relations across the shock are consistent with conser
flux and its Jacobian used in computing the conservation equations behind the shock:

Semi-implicit Runge—Kutta Schemes

The perfect gas assumption commonly used in direct numerical simulation beco
inaccurate for practical hypersonic flows because flow temperatures rise significantly a
the bow shocks. As a result, the gas between the shock and the body surface bec
thermally excited and chemically reacting. The temporal integration calculations are o
stiff for such transient reacting flow simulations. We have developed [30] a set of th
order semi-implicit Runge—Kutta schemes for the high-order temporal discretization of
flow equations with stiff thermo-chemical nonequilibrium source terms. The third-or
semi-implicit Runge—Kutta schemes are able to compute stiff reactive flow equations
third-order temporal accuracy and are unconditionally stable for the stiff terms. Onthe o
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hand, for the DNS of non-reacting perfect-gas hypersonic flows at relative low Reync
numbers, the semi-implicit Runge—Kutta schemes are replaced by simpler explicit Rur
Kutta schemes, such as the low-storage Runge—Kutta schemes of Williamson [42].

2. EQUATIONS

The governing equations for the DNS of hypersonic boundary layer transition are
three-dimensional Navier—Stokes equations, which can be written in the following conse
tion-law form in the Cartesian coordinates,

U aF; aF,
7_’_7

i =W, 1
ot + 0X; 0X; (1)

whereU, Fj, andF,; are the vectors of flow variables, convective flux, and viscous flux
the jth spatial direction respectively, i.e.,

U = {pm, puz, pUz, pUs, €} (2
PmUj
pULUj + P8y;
Fj = { pu2uj + pdz; (3)
pUsUj + Pds;
(e+ pu;j

0

Foj = T2j ~ (4)

TikUk — Qj

In Eq. (1), W=W(U), is the source terms introduced by the thermo-chemical noneg
librium processes. The specific formulas for the source terms are determined by phy
models used for the nonequilibrium processes. Details of a five-species air model fol
personic flows can be found in [43].

In this paper, only a special case of perfect-gas hypersonic flow is considered in deta
the purpose of presenting and testing the numerical methods. The numerical method
be extended to nonequilibrium flow easily. For perfect gas flow, the sourcé¥eramishes
and the equation of state and the transport equations are

p=pRT )
1
e=p (CUT + EUkUk> (6)
duj  0u; Ui
S R BTkl B R Whthus. ) W 7
Tij M(axj + 3Xi> X ij ( )
oT
T 8
QJ Kaxj ’ ( )

whereR is the gas constant. The specific hagtandc, are assumed to be constants with
given ratio of specific heats. The viscosity coefficient can be calculated by Sutherland’s
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law in the form

T\2T 4+ Ts
_ ., (L T s 9
0 Mr(TO) T %)

andx is assumed to be 2. /3. The heat conductivity coefficientcan be computed through
a constant Prandtl numbEr.

3. UPWIND SCHEMES USING CENTERED GRID STENCILS

The governing equation (1) is discretized using the method of lines by separate spatia
temporal discretizations. The main difficulty in the spatial discretization is the numeri
instability of high-order schemes for discretizing the inviscid convective flux terms. Hig
order central finite-difference schemes can be used for the viscous flux terms. This
derives a family of finite-difference high-order upwind compact and explicit schemes
the discretization of convective terms for the direct numerical simulations of hypersc
boundary layers. The model equation of the inviscid Euler equations in deriving the upw
schemes is the linear wave equation

au au
— +c— =0, a<x<hb, 10
ot + X - T (10)
wherec > 0. Downwind schemes far < 0 can be easily obtained from upwind scheme:
In spatial discretization of Eq. (10), the general compact and explicit finite-difference

proximation fordu/ax located at théth grid point can be written as [32, 38]

Mo No

, 1
Z bi+kui+k:H Z kUi 4k, (11)

k=—M+Mp+1 k=—N+Np+1

where uniform grids with grid spacing afare assumed, and,, is the numerical approx-
imation ofdu/dx located at thei(+ k)th grid point. On the right hand side of the equation
a total of N grid points are used witiNg points biased with respect to the base point
A similar grid combination oM and My is used on the left hand side of the equation. |
this paper, a scheme using this grid combination is termedlitiNg-M-Mg scheme, which
includes both compact and explicit schemes as its special cases.

This paper considers a family of upwind compact and explicit high-order finite-differer
methods using central grid stencils, i.e.,

N=2Ng+1 (12)

M =2Mg + 1. (13)
The coefficientsy . andb; ¢ of the upwind schemes are determined such that the ordel
the schemes is one order lower than the maximum achievable order for the central st
i.e., the orders of the upwind schemes are always odd integgrs=a2(No + Mp) — 1. As

a result, there is a free parametein the coefficients; ,x andb; . The free parameter is
set to be the coefficient of the leading truncation term which is a derivative even order,

Mo No
1 o guptl
b O " S hP e 14
k_%M kUi i h k_E,N & 1k Uitk (Pt D) <3p+1x)i + (14)
= 0 = 0
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wherep=2(Ng + Mg) — 1, and« is the free parameter. All schemes with nonzerare
pth order accurate, and they are central schemes-6fl()th order wherx = 0. The choice
of @ is not unique, and it has effects mainly on the magnitudes of numerical dissipation
on the stability of the schemes. The specific value &r an upwind scheme is chosen to
be large enough to stabilize the high-order upwind inner scheme when it is coupled !
stable boundary closure schemes, and to be small enough so that the dissipation errc
comparable to the dispersion errors of the inner scheme.

The detailed expressions of the fifth-order upwind compact and explicit upwind sche
are derived below. Only three-point compact schendds=(3) are considered in order
to maintain the computational efficiency of the schemes. The corresponding third-
seventh-order schemes can be derived similarly, and they are listed in the Appendix.

Fifth-Order Upwind Compact Schemes

A fifth-order compact scheme can be obtained using a 5-2-3-1 grid stencil as

, , , 1< o, [ dub
bi_qui_; + by +bi+lui+1=H Zai—t-kui—&-k_ah 265% /. o N (15)
k=-2 : !

where

5 5
Q2 =F_ + o, b =20+«

3 6
:|:140 20
t1 = 3 + 3 o
8 = —15, b = 60.

These schemes are fifth-order upwind compact schemesavkeh and they reduce to the
sixth-order central scheme when=0. The specific value af for an upwind scheme is
determined based on the analyses on the dissipation errors and stability of the inner sc
with boundary conditions.

The dissipation and dispersive errors of the high-order upwind schemes are anal
using the Fourier analysis when they are applied to Eq. (10) with a periodic bounc
condition. The trial solution is

u=uv(t) /N (16)
The exact derivative of the trial solution is

Bu_iw

i hu a7

Applying the trial function to a finite-difference scheme given by Eq. (14) leads to

au ia)]_
o 18
x = h W (18)
where
No ' eika)
PP =SV L (19)

M o
D ke, Dk €k
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The dimensionless dispersive (phase) and dissipative errors of using the finite-differ
scheme to approximate the derivative in the linear wave equation are represented b
real and imaginary parts af; — , i.e.,

Phase Errors= Realw; — w) (20)

Dissipation Errors= Im(w1), (21)

where the errors are functions of the dimensionless parameter

Figure 3 shows the dispersion and dissipation errors of three fifth-order compact 5-2
schemes withy at 0 —1, and—2. The figure shows that compact upwind schemes wi
different values ofr have different phase errors as shown by the solid lines in the figu
because of the rational formulas used in the compact schemes. The dissipation errors
compact schemes increasexdisicreases. Far satisfying

—1<a<0 (22)

the dissipation errors of the upwind compact schemes are smaller or comparable t
corresponding phase errors. Therefore, the valuesattisfying (22) is considered to satisfy
the dissipation condition. The smaller is the magnitude,ahe smaller are the dissipation
errors of the upwind compact schemes.

Though very small or zero values af lead to a scheme with very small or no dis-
sipation, whenx is too small, a compact 5-2-3-1 scheme is not stable when the in

g
o
© I
E 25 I — W-REAL(W,) a=0
<] o —--=- IMAG(W,) =0
$ ——— W-REALW,) a=-1
’g— I i IMAG(W,) a=-1
= 20} —— W-REALW,) a=-2
3 I ———= IMAG(W,) a=-2
o

15|

10 |-

05|

0.0 I

0.0 05 1.0

FIG. 3. Phase error$h(w;) — w) and dissipation errord(w,) of the fifth-order upwind compact schemes
5-2-3-1 with several values of. The three solid lines from top to bottom correspond to the phase errors of t
schemes using values of 0,—1, and—2, respectively.
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scheme is coupled with high-order boundary closure schemes. Therefore in additic
the dissipation conditiong should also be large enough to stabilize the inner schel
when it is coupled with boundary closure schemes. The stability analysis is based ol
asymptotic stability analysis for the interior scheme with boundary closure. We do
use the stability analysis of Gustafssenal. [44] based on the normal mode approacl
because of the complexity of the analysis for high-order upwind schemes. The asy
totic stability of the upwind schemes with numerical boundary closures is analyzed
computing the eigenvalues of the matrices obtained by spatial discretization of the v
equation. The asymptotic stability, which requires that the eigenvalues of the spatial
cretization matrices contain no positive real parts, is necessary for the stability of Ic
time integration of the equation. The eigenvalue analysis is only a necessary cond
for the stability of the schemes when the matrices do not have full sets of eigenva
and eigenfunctions. Numerical computations show that the matrices for high-order
wind schemes with boundary conditions have full eigenvalues. For such normal matri
the eigenvalue analysis is accurate in assessing the stability of high-order finite-differ
schemes.

High-order finite-difference schemes require additional numerical boundary sche
at grid points near the boundaries of the computational domain. fptin arder interior
scheme, the accuracy of boundary schemes cap bel()st order accurate without reduc-
ing the global accuracy of the interior scheme. For the fifth-order compact upwind 5-2-
schemes, two numerical boundary conditions are needed on both ends of the bound
Fourth-order boundary schemes are used in order to maintain fifth-order overall a
racy. Both compact and explicit finite-difference schemes using one-sided bias stencil.
be used as numerical boundary schemes. The fifth-order inner upwind compact sch
with fourth-order compact boundary schemes, which are represented by 4,4-5-4,4
are

60up + 180u; = —(—170ug + 90u; + 90u, — 10u3) (23)

(—45Up + 45uy) (24)

Sl Sl

15U6 + 60u; + 15u;, =
1 2
bi_lui’,l + by Ui, + bi+1u{+l = h Z A kUi +k i=23,...,N—-2 (25)
k=-2

-1
15uy + 60uy_; + 15uy_, = T(_45UN + 45uN-2) (26)

—1
60U + 180Uy 3 = —~(~170uy +90uy_1 + 902 — 10UN_3). (27)

where the coefficients for the inner schemes are given by Eq. (15). Substituting the
roximation above into the wave equation (10) with the non-periodic boundary conditiol
x = 0leads to

du c
B— = -AU t 28
G0 = AU+ o). (28)
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whereU = (ug, ..., un)T, g(t) = —Fuo(t)[—10,0,...,0,0]", and

[—90 90 10 |
A—_ d_2 d_1 & A1 Q42 (29)
—45 0 45
I 10 -90 —90 170
(60 60 i
B— bi_1 b b (30)
15 60 15
180 60

The asymptotic stability condition for the semi-discrete equations is that all eigenvalue
matrix P = B~1A contain no positive real parts.

Figure 4 shows the eigenvalue spectra.pfor the upwind compact 5-2-3-1 schemes
with a 4,4-5-4,4 compact boundary closure. The figure shows that sixth-order central
ference compact schemes=£ 0) are not stable when they are coupled with fourth-orde
boundary schemes. Carpengtral. showed that for the sixth-order 5-2-3-1 central com
pact scheme, the stable boundary conditions are 3,4-6-4,3 schemes. However, comput

| e} a=0
- o o=-1
(o2
E [
I a
| Ab
AA DD OO
1 A o 9)
A (s} O
A (u] o)
A o fe)
A o 1)
ay o (o]
£ o o
A DD o
f 0°
01% 3 %
[ul o]
in] o]
A [n] o]
A o O
A o O
A, a o]
A a O
A [a] O
A fu] @)
1 AA a O
A DD OO
%ék S g
[}
Y R W TR T NN ST N SR S NN g. | I S S N N T Y i B — |-
05 0.4 0.3 0.2 -0.1 0.0 0.1

Real(L)

FIG. 4. Eigenvalue spectra for the fifth-order upwind compact 5-2-3-1 schemes with several value:
a (N=50).
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using the 3,4-6-4,3 schemes are only fourth-order globally accurate even though the

schemes are sixth-order accurate. The figure shows that the use of upwinding in i
schemes help to stabilize the schemes coupled with the high-order boundary condit
The recommended values of the free parametar the upwind schemes are chosen t
stabilize the high-order boundary closures. The valueftirat satisfies both stability and

dissipation conditions is chosen tode- —1, at which the scheme is stable. The fifth-orde
upwind compact inner scheme using the value ef —1 is

) ) 1/ 5 160 5
25Ui/71 + 60.|| + 15ui+l = H <—§Ui2 - ?Uifl + 15U| + 40Ji+1 + EUHLZ) . (31)

In numerical simulation of Navier—Stokes equations for multi-dimensional flows, the ac
value ofw can be slightly different from the recommended value because of the nonlinee
of the equations.

Fifth-Order Upwind Explicit Schemes

A fifth-order explicit scheme can be obtained using a 7-3-1-0 grid stencil as

u/_ 1 i U o h5 8U6 n (32)
N T L

where

1 1
gi3=F1+ —a, @Gi2=F9- s«

12 2
5 5
@41 = 45+ ZO[, a; =—§Ol

b = 60.

These schemes are fifth-order upwind explicit schemes whef, and they reduce to a
sixth-order central scheme whenr= 0. Again, the specific value of is determined by the
conditions on dissipation errors and stability. The recommended valueisapbtained to
bea = —6, and the corresponding fifth-order upwind explicit inner scheme is

, 1 3 105 75 1
U = 60h <—2Ui—3+ 12u;_ — TUi_l + 10u; + ?Ui-s-l — 6Ui42 + 2Ui+3>~ (33)

Itis noted that the fifth-order upwind-bias (6-2-1-0) scheme of Rai and Moin [18] is a spe
case of the current fifth-order upwind schemes correspondimg-te-12 andg; .3 =0. The
numerical dissipation of the current fifth-order upwind scheme given by Eq. (33) is ab
half as large as the upwind scheme using a upwind-bias stencil.

Figure 5 shows the dispersion and dissipation errors of the upwind explicit 7-3-
schemes with three different valuesobf —6, —12, —24. All seven-point explicit schemes
of different values o& have the same phase errors as the sixth central scheme represe
by the solid line in the figure. ARx| increases, the numerical dissipation increases. T
figure shows that at the recommended valua ef —6, the dissipation errors are smallel
than the phase errors. The figure also includes the errors for the upwind-bias scheme:
which correspond te = —12. The figure confirms that the present upwind schemes usi



674 XIAOLIN ZHONG

. 30}
5 I
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] “t  ----- IMAG(W,) o=-6
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5 S IMAG(-W,)  o=-12 —
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FIG. 5. Phase errorgfi(w;) — w) and dissipation error3(w;) of the fifth-order upwind explicit schemes
7-3-1-0 with several values of.

the recommended values@f= —6 have smaller dissipation errors than the schemes usi
upwind bias stencils. Therefore, the stability and accuracy considerationin this paper les
upwind schemes which are stable and are numerically less dissipative than a straightfor
upwind scheme using an upwind-bias grid stencil.

Figure 6 shows the eigenvalue spectra for the stability of the fifth-order upwind expl
inner 7-3-1-0 schemes coupled with fourth-order explicit boundary closure schemes
4-5-4,4,4). The figure shows that the explicit sixth-order central schem®j with fourth-
order boundary schemes is not stable. Again, the implicit numerical dissipation in
upwind schemes has a stabilizing effect on the high-order schemes with boundary clos
At the recommended value for this schemexet —6, the inner scheme with fourth-order
boundary closures is stable.

Compact vs Non-compafiExplicit) Schemes

Compact schemes have been favored for the direct numerical simulations of transiti
and turbulent flows because of their smaller truncation errors and narrower local grid ster
The stability analysis in this section (Figs. 4 and 6) shows that the stability propertie
compact and explicit schemes of the same order are very similar. Compared with the up
compact schemes of the same order, high-order explicit upwind schemes can achie\
same order of accuracy with stable high-order boundary closures though more bour
closures are needed for the explicit schemes. These results suggest that the common
that it is easier to set stable boundary conditions for compact high-order schemes be
of narrower grid stencils is not true. In addition, the explicit schemes have the advantag
requiring less computations in derivative approximations and of being easier to be apj
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FIG. 6. Eigenvalue spectra for the fifth-order upwind explicit schemes 7-3-1-0 with several values

a (N =50).

to implicit time-integration schemes for stiff systems of reactive flow equations. Theref
both the compact and explicit schemes have their advantages and disadvantages. Be
the two approaches, the compact schemes are the method of choice for discretizati
derivatives in the direction with periodic boundary conditions. For discretization in t
direction with non-periodic boundary conditions, the accuracy of the computations is o
limited by the accuracy of boundary schemes. In this case, both explicitand compact up

schemes can be used.

Extension to Systems of Equations

The current upwind schemes are applied to the system of equations (1) by flux splittir
by applying the schemes in each characteristic field. A simple local Lax—Friedrichs sch
can also be used to split an inviscid flux veckgrinto positive and negative wave fields sc

that the upwind schemes can be applied,
where
+ 1
Fr= E(Fj +AU)

1
Fi = 5(Fj =20,

(34)

(39)

(36)

where is a positive parameter chosen to be larger than the local maximum eigenva
of Fj. The flux F;r andF;” contains only positive and negative eigenvalues, respective
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Therefore, in the spatial discretization of Eq. (1), the flux derivatives are split into two tel
where the first term is discretized by an upwind high-order finite-difference method and
second term is discretized by a downwind high-order finite-difference method.

For the compressible Navier—Stokes equations (1) in a conservation-law form, the sec
order derivatives do not appear explicitly in the equations. Instead, they appear as first-
derivatives in the transport flux vectors in Eq. (4). For such equations, the viscous te
can be discretized by applying central finite-difference operators for the first deriva
twice [37]. The approximation of the first-order derivative for computing the viscous ter
can be done using standard central compact or explicit schemes with one-sided diffel
approximation. For example, the sixth-order central inner schemes (5-3-3-1) and the s
order compact boundary schemes are

1
60.16 + 300.!3_ = H (—197ug — 25u4 4+ 300u, — 100Qu3 + 25u4 — 3us) (37)

15 | 1/ 215 135 5
—upy+60u; +45u, = = ————Ug—50u; + —up + 10uz — —u 38
20+ 1+ 49U, h(80 1+22+ 384> (38)
12
bi,lu{,l + b Ui/ + bi+1ui/+1 = n Z A+ kUi 4k i=23...,N=-2 (39)
k=—2
15 1/215 135 5
454, 60U —uy = - | — 50un_1 — —Un_2 — 10upn_ —Un—
N—2 T N—1+2UN h(SUN-i- N—1 2UN2 N3+8UN 4)
(40)
1
60Uy +300uy 5 = = (197 +25Un-1 — 300N + 100Uy 3
— 25UN-4+ 3UN-s), (41)

where the coefficients for the inner schemes are given by Eq. (15witQ. The formulas
can be written into matrix form

BU’ = AU, (42)

whereU = (Ug, ..., Uyn)'. The second-order derivative in viscous terms is obtained |
applying the first-order operator twice, i.e.,

BU” = AU’ = AB'AU. (43)

Another approach is to apply high-order central schemes directly to second-order de
tives in the equations. While the previous approach is easier to be implemented in s
lations, the direct discretization of the second-order derivatives is more stable in prac
calculations of the Navier—Stokes equations. The previous approach also leads to a wide
stencil than applying central compact schemes directly to a second-order derivative dire

Effect of Grid Stretching

The high-order schemes in this paper are derived for uniform grids. For viscous f
simulations, however, grids are often strongly stretched in the direction normal to the
in order to cluster more grid points near the wall. We investigate the effect of grid stretct
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on the stability and accuracy of high-order difference schemes applied to a linear v
equation. Two approaches can be used to apply a high-order finite-difference scher
the wave equation in a stretched grid. The first approach transforms the equation i
physical domain of a stretched grid into the computational domain of a uniform grid
a coordinate transformation. The transformed equation is then discretized by the fi
difference scheme in the uniform computational grid. The second approach applies
high-order polynomial interpolation directly to the stretched physical grid without usi
the coordinate transformation. The asymptotic stability properties, and phase and dissif
errors, of the finite-difference scheme in the stretched grid can be investigated usin
same analyses of the preceding sections for the uniform grids.

The asymptotic stability analysis for the two approaches is carried out for the fi
order upwind explicit 7-3-1-0 scheme with= —12 coupled with the fourth-order explicit
boundary closure schemes (4,4,4-5-4,4,4). The specific stretched grid is specified b
following coordinate transformation [45],

IN((B + X2 + 1) — 20) /(B — X2 + 1) + 2a))
In((B+1)/(B — 1))
0<x=<10<&<1, (44

E=a—(1-w)

where a uniform grict in the computational domain is transformed into a stretched gt
x in the physical domain, and the extent of the stretching is determined by the value
«a andpg. The values used in the analysis are- 0.5 andg =1.01015. Figure 7 shows the

— [
< 2.0E6 |-
=) [ o N =100
g = N =200
1.0E6 [-
(@)
_. L O. i - - .. . o(())
5 [ Ne ] @ - 6...
0.0E0 |- o . B‘.W
] o = ..O- "R Tnw Q.-gg @)
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-2.0E5 -15E5 -1.0E5 -5.0E4 0.0E0 5.0E4 1.0E5

Real(A)

FIG. 7. Eigenvalue spectrum for the fifth-order upwind explicit scheme (7-3-1-Ocard-12) applied
to the linear wave equation by using the approach of coordinate transformation in two sets of stretched
(N =100, 200).
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FIG. 8. Eigenvalue spectrum for the fifth-order upwind explicit scheme (7-3-1-Ocaad-12) applied to
the linear wave equation by using the approach of direct polynomial interpolation in the non-uniform phys
coordinates in two sets of stretched grigié= 100, 200).

eigenvalue spectrum for the fifth-order scheme applied to the wave equation by using
approach of coordinate transformation. The figure shows that the scheme becomes un
for strongly stretched grids. As the number of grid points increases, the relative stretc
of the grid reduces and the scheme becomes less unstable. Further calculations alsc
that the scheme eventually becomes stable when the grid is uniform enough. There
grid stretching has a destabilizing effect when the fifth-order scheme is applied to the v
equation by a coordinate transformation. On the other hand, if the high-order schen
obtained by a direct high-order polynomial interpolation in the physical non-uniform gr
the asymptotic stability analysis shows that such a high-order scheme is stable for hi
stretched grids as shown by Fig. 8. Similar asymptotic stability analysis has also t
carried out for a linear one-dimensional heat equation. It is found that the grid stretcl
does not have destabilizing effects on the stability of the diffusive equation calcula
using high-order central schemes based on coordinate transformation. Therefore, the
high-order schemes based on the approach of coordinate transformation will be stable
stretched grid in the boundary layers where the equations are dominated by viscous t
On the other hand, for flow fields with strong convection, such as the flow immediat
behind the bow shocks, the grid stretching near the shocks may cause numerical inste
if high-order schemes are applied in transformed coordinates. In such cases, the high-
schemes should be applied directly in the physical coordinates.

The effect of grid stretching on the accuracy of the high-order schemes is investigate
computing the dispersion and dissipation errors using similar formulas as Egs. (20) and
Figure 9 shows the dispersion and dissipation errors of the fifth-order upwind expl
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FIG. 9. Phase errorgfi(w;) — ) and dissipation error8(w;) of the fifth-order upwind explicit scheme
(7-3-1-0 andv = —12) applied to the linear wave equation by using the approach of direct polynomial interpolat
in the non-uniform physical coordinates in a set\of= 120 stretched grids.

7-3-1-0 schemes witla = —12 in the same stretched grid used in the stability analysis. T
accuracy of the scheme in the stretched grid is compared with that in a uniform grid of
same size. The figure shows that the dissipation and the phase errors in a stretched g
comparable or slightly larger to those in the uniform grid.

4. HIGH-ORDER SHOCK-FITTING FORMULATIONS

A shock-fitting method is used to compute unsteady three-dimensional viscous hy
sonic flow over blunt bodies. The governing equations are solved in general curvilir
three-dimensional coordinates §, ¢, t) along body fitted grid lines shown in Fig. 10. The
bow shock is treated as a computational boundary where the transient shock movem
solved as a part of the solutions. Consequently, the grid surfage-abnstant is unsteady
due to the shock movement, but the grid surface$§ efconstant and’ = constant are
fixed planar surfaces during the calculations. Therefore, the transformation relations
ween the Cartesian coordinates and the)( ¢, t) coordinates for the current shock-fitting
computations are

E=£(X,Y,2 X=X(&,n,¢,1)
n=nXY,zt) y=YyE&. n¢, 1)

45
c=txy.2 T \z=26n.00) (45)
‘L’:t tzf,

whereg =0 andg; =0.
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Freestream Waves

bow shock

FIG. 10. A schematic of three-dimensional shock-fitting grids for the direct numerical simulation of hyp
sonic boundary-layer receptivity to freestream disturbances over a blunt leading edge.

The governing equation (1) is transformed into the computational dohain £, t) as

10U  0E' 9F  9G' 9E, 9F, G, | al/d) _W

Jor T T an + 3 * e an o At 3 9
where
£ _ Fiéx + Fggy + F3&, 7)
e Pt Fzﬂy;‘ Fanz +Un (48)
G — Filx + Fgé“y + Fs¢; (49)
E = Foiéx + Fujfy + Fu3&; (50)
F = Foinx + ijny + Fuang (51)
Gl = Fo1ox + Fujé“y + Fv3§z’ (52)

wherelJ is the Jacobian of the coordinate transformation &0&,, &, nx, ny, 1z, N, &x, Ly,
and¢, are the grid transformation metrics which are functions of the distéh@e ¢, 7)
between the shock and the wall along & constant grid line, and the time derivatit .
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In Eq. (46), the transformed inviscid flux&s, F’, andG’ are standard flux terms with
full sets of eigenvalues and eigenvectors. The transport flux t&fmB,, andG/, contain
first-order spatial derivatives of velocity and temperature. The governing equations (46
discretized in the uniform computational space.

The shock-fitting method treats the bow shock as a computational boundary at

n(X, ¥, Z,1) = nmax = constant (53)

The flow variables immediately behind the shock are determined by the Rankine—Hugc
relation across the shock and a characteristic compatibility equation from the flow f
behind the shock. The position and velocity of the shock front are functiohl®f¢, 1)
and H. (€, ¢, t), which are solved as independent flow variables using high-order fini
difference methods. The normal vector of the shock front is

. : K
_ nxl + ny] +nz (54)
IVl
and the velocity of the shock front in the directionrois
v = — (55)

IVl

where|Vn| =, /nZ + 77)2, + n2.
The flow variables across the shock are governed by the Rankine—Hugoniot conditi

F.=F (56)

where the subscrifgrepresents the variable immediately behind the shock and subscri
represents the variable on the free stream side of the shock surface. TRé iiuthe flux
in the computational space along thegrids line. Equation (48) leads to

[Vl
=2
J

(F-n—uvyU), (57)
whereF = Fii + F»j + F3k.

The Rankine—Hugoniot relations (56) lead to jump conditions for flow variables beh
the shock as functions &f, and the grid velocity,, i.e.,

2y 2
— 1+ ——(M5, -1 58
Ps pO{ +)/+1( no ):| (58)
(y + DMZ
= 1+ ——T 59
pe ”{+Ky—nM$+2 )
£0
Uns = Vn + — (Uno — ¥n) (60)
s
Uts = Uto = Up — UnoN (61)
Us = Uts + Upsh = Up + (Uns — Unp)N, (62)

whereMpg is the normal component of the freestream Mach number relative to the sh
motions,u is the velocity vectony; is the tangential velocity vector, ang is the normal
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velocity component. In order to compute the flow variable behind the shock using
shock jump conditions above, the velocity of the shock franis needed. The shock
normal velocity is determined by a characteristic compatibility equation at the grid pc
immediately behind the shock.

The shock-fitting computations and the shock geometry transformation relations
greatly simplified if the characteristic compatibility equation is written in the conservatic
law form, which can be derived directly from Eq. (46) in the direction alongnticeor-
dinates. Specifically, the interior equation (46) in the computational domain at the p
immediately behind the shock front can be written as

18U+8F’_W dE’ 3G’ JE., IF, 8G), Ua(l/J)
Joar  anp I ¥ ¢ OE an ac ar

(63)

where the equation is evaluated at paitnmediately behind the shock. In the equations
the Jacobian matrix@, = (dF’/aU)s, has the eigenvalues

4 v V| V|
l‘]—m(un — Un)s, - -+, |J—n|(un — Un)s, |T(Un — Up — O)s, T(Un —un+0O)s (64)

wherec is speed of the sound. The corresponding left eigenvectors are
I3, 12, ... Inc1s I, (65)

whereN is the number of independent variables in the equations, and

[ hu-u—cuy
| —en— )
-1
In = = —(3cny — o) | . (66)
~(3om, — #5tw)
y=1
L 2 ds
The left eigenvector behind the shock satisfies
, 1V
In- B = T"(un—vn+c)s|N. (67)

The characteristic field approaching the shock from behind corresponds to the eigen
with a positive sign which ié@(un — vp + C)s. The corresponding eigenvectotis The
compatibility relation at a grid point immediately behind the shock for this characteris
field can be obtained by multiplying Eq. (63) by,

=T E T T TPv_y
ot

(YN (W _0E_9F 9G 9E, oF, 3G, | (1/J)
N “N\T e ey a8 e an ¢

) J. (68)
On the other hand, the shock jump condition (56) can be rewritten as

[F1=(Fs—Fo)-a+ (Us—Upb =0, (69)
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= (), ()1 (5): R
b= <’3> (71)

Taking the derivative of Eq. (69) with respective:tdn the computational space leads to

dUg oUp
B/ Bo 9t ( - FO) P + (Us - UO)* (72)

where

where the flux Jacob|an
oF’
ou
is the Jacobian of the direction flux defined in the conservation equations (46), and

8_6\ _ 3(7)x/~])si + 8(77y/‘])s i+ 8(772/‘])5k

!

(73)

= (74)
ot ot ot it

b _ a0/ Ds 75)
at Jat

These time derivatives of the grid metrics can be derived by the same methods as thost
in discretization of the interior equations.

Finally, the equation for the shock velocity can be obtained by multiplying both sides
Eq. (72) byly and using the relation of (67), i.e.,

ab -1
3t [In- (Us — Up)]

U U
u(un—vn+c>slN~<aa—T) + 1+ (Fs— Fo) - ——(lN B{,)a °l, @)

(76)

J

where the termy - "B—Lf is computed using the characteristic relation (68), in which tt
spatial derivatives are discretized together with the discretization of the interior points
the Eq. (46) using the same schemes at the interior algorithm applied to boundary be

the shock. In the equation abov@@ and - can be expressed as a functiortbfindH, as

ab

fa

ai = g(E’ §9 Hv H‘E)a (79)
T

whereH = H (¢, ¢, 7) is the distance between the shock and the wall along-=anonstant
grid line, andH, =dH/dt. The coefficientsd;, d,, and vectorg are functions of grid
metrics.

Therefore, the governing equations for the two independent variables)d H,, for
shock motions can be obtained from Egs. (77) to (79) in the form

{%”J= (8¢ Us.In- (57)5 Vo, 52 HL He)

aH _
W—HI.

(80)

The two equations are additional governing equations for the shock normal velocity
shock shape. They are integrated in time simultaneously with the interior flow varial
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and are advanced in time using the same Runge—Kutta methods as the interior Eq.
After the values oH andH, are determined, the flow variables behind the shock can
computed by the jump conditions across the shock using Eqgs. (58) to (62). The grids
metrics are modified according to the new valuesiohindH, .

The current formulation is simple in high-order implementation because the goverr
equations for the shock movement are derived using conservative variable and flux Jac
in Eg. (72) using the relation (67). The same discretization of the interior governing ec
tions is used to evalua(é?;’f)s at grid points immediately behind the shock. In addition
all geometric definitions of the shock front are the same as the grid metrics used in
interior equation transformation, which are stored in the computer. In doing so, the cur
approach avoids the complication of using the non-conservation variables and locally
fined geometric parameters for the shock front in deriving the time derivatives of the st
jump condition.

5. SEMI-IMPLICIT RUNGE-KUTTA SCHEMES

The spatial discretization of the governing equations leads to a system of first-o
ordinary differential equations for the flow variables. Explicit Runge—Kutta schemes of
to third order accuracy, such as the low-storage Runge—Kutta schemes of Williamson
can be used to advance the equations in time for the DNS of non-reacting hypersonic fl
For reacting hypersonic flow simulations, the thermo-chemical sourcei&id) is often
stiff in temporal discretization. Semi-implicit Runge—Kutta schemes of up to third orc
derived by Zhong [30] can be used. The semi-implicit Runge—Kutta schemes are br
described below. The details of the derivations of the third-order semi-implicit Runge—Ki
schemes can be found in [30].

The spatial discretization of reacting flow equations leads to

=+ gw, )
whereu is the vector of discretized flow field variableéscontains the non-stiff terms
resulting from spatial discretization of the flux terms which can be computed explicitly, ¢
g contains the stiff thermo-chemical source terms which need to be computed implic
For high-order temporal integration of the stiff governing equations, Ref. [30] deriv
three versions of 3-stage third-order semi-implicit Runge—Kutta schemes for integra
Eq. (81) by simultaneously treatirfgexplicitly and g implicitly. The coefficients of the
semi-implicit schemes were derived such that the schemes are high-order accurate wi
simultaneous coupling between the implicit and explicit terms. In addition, the scheme:
unconditionally stable for the stiff terms when a CFL condition is satisfied for the expli
terms.

ASIRK-3A Scheme

ki =h{f(u") +g(u" + arks) }

ka = h{f(u" + baik1) + g(u" + Ca1k1 + azk2) }

ks = h{f(u" + baik1 + bsakz) + g(U" + Carks + Carkz + agks) }
U = U + w1ky 4 woko + wsks
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ASIRK-3B Scheme

[I —haJ(uM ]k = h{f(u") 4 g(u")}

[I — hapd(uM]kz = h{f(u" + boiks) + g(u" + carks) }

[I — hagd(UM]ks = h{f(u" + baiks + bgokz) + g(u" + Cazks + Cak) }
U™l = u" + wiky + wako + w3ka

ASIRK-3C Scheme

[I — hagd(u]ks = h{fu" + gu")}

[I — hapd (U" + cpiky) | ko = h{f(u" + boiks) 4+ g(u" + C21ka) }

[| — hagJ(u“ + C31k1 + ngkg)} ks = h{f(u” + baiky + bgzkz)
+g(u" + Carky + Cazkz) }

U™l = u" + wiky + waky + w3k,

wherel is the Jacobian df vector. The parameters are

ASIRK-3A, ASIRK-3B, and ASIRK-3C

w1 = % wy = % w3 = %

boi=8 bu=L bp=%
ASIRK-3A

a; = .485561 a, = .951130 az = .189208

Cy1 = .306727 C31 = .45 C32 = —.263111
ASIRK-3B

a; = 1.40316 a, = .322295 az = .315342

Cy1 = 1.56056 C31 = % Czp = —.696345
ASIRK-3C

a = .797097 &, =.591381  ay — .134705

Co1 = 1.05893  cz = 1 Ca2 = —.375939

whereay, ay, as, C21, andcs; are irrational numbers with six significant digits. The double
precision values of these parameters can be found in [30]. The first method above
diagonally implicit Runge—Kutta methods for the stiff tegnwhich leads to a nonlinear
equation at every stage of the implicit calculationg i§ a nonlinear function ofi. The
second and third methods use linearized implicit schemes for the stiffgekethods B
and C, which are similar to linearized implicit methods commonly used in computi
reactive flows, are more efficient than the full implicit method A. However, for some st
nonlinear problems, method A is necessary because it is more stable than the Rosen
semi-implicit Runge—Kutta method.
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6. RESULTS OF NUMERICAL EXPERIMENTS

The new high-order upwind schemes with and without the shock-fitting procedure
validated and tested in computations for the linear wave equation and nonlinear Nay
Stokes equations. The numerical accuracy and stability of the high-order upwind sche
without the shock-fitting procedure are first validated in computations of the linear ma
wave equation. The schemes are then applied to the computations of the Navier—S
equations for steady and unsteady supersonic Couette flows, where the shock fitting
cedure is not needed. The numerical solutions are compared with analytical solutions
are evaluated by grid refinements. The upwind schemes with the shock-fitting proce
are subsequently applied to a two-dimensional steady hypersonic flow over a cylinder.
numerical results are compared with experimental results and evaluated by grid refinem
The focus of the test cases is on the high-order upwind schemes and the shock-fitting fc
lations. Therefore, the Navier—Stokes equations with perfect-gas assumption are ass
in the test cases of this paper. The applications of semi-implicit Runge—Kutta scheme
reacting hypersonic flow simulations are an independent research topic of their own.
are presented in other papers [46].

Linear 1-D Wave Equation

The new compact and explicit upwind schemes are tested in computations for the
dimensional linear wave equation (10). Both periodic and non-periodic boundary condit
are computed to test the accuracy of schemes with and without boundary closures
parameters of the calculations @e- 0,b =1, c = 1, N + 1 uniform grid points, and the
initial condition is

u(x, 0) = sin(wmx), 0<x<l1 (82)

The temporal time marching scheme is a third-order explicit Runge—Kutta scheme. In
to compare spatial discretization errors of different schemes, a small CFL number of 0
is used so that the temporal discretization errors are negligible compared with those ¢
spatial discretization. Grid refinements in time are used to ensure that the solution:
independent of the time step sizes.

The results of the new upwind schemes are compared with those of the sixth-o
standard central compact scheme with stable 3,4-6-4,3 boundary closure and a fc
order compact central 7-3-5-2 scheme of Lele [32] for spectral-like resolution. The 7-3-
optimized scheme [32] is fourth-order accurate but has smaller phase errors at large
numberw. Though the order of the scheme is lower than the maximum achievable ol
for the stencil it used, the degree of freedom in deriving the coefficients is used to minin
the phase errors in resolving high wave-number modes. Compared with schemes
maximum order accuracy, the optimized schemes have lower accuracy for resolving m
of small w, but they have higher accuracy in resolving modes of lasgdt is expected
that the optimized schemes resolve a range of length scales better than the maxi
order schemes. Similar approaches have also been used in optimizing finite-differ
schemes for various applications [36, 38, 47, 48]. The optimized schemes, howevel
derived without considering the effects of boundary conditions. For computations v
non-periodic boundary conditions, it is not clear how boundary closure schemes w
affect the performance of the optimized schemes.
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TABLE |
L! Errors of Solving Wave Equation with Periodic Boundary Conditions

L errors of three schemes

w L/AX 9-4-1-0(a = 36) 7-3-3-1(a = 36) 7-3-5-2 (Lele)
2 50.0 0.18€7) 0.11¢7) 0.44 (-5)
4 25.0 0.49 {5) 0.26 (5) 0.17 £3)
6 16.7 0.13£3) 0.66 (-4) 0.10 (-2)
8 125 0.14 £2) 0.66 (3) 0.41 (2)

10 10.0 0.93¢2) 0.39 (2) 0.12 (1)

12 8.3 0.41¢1) 0.16 (1) 0.28 (1)

14 7.1 0.14 0.5441) 0.55 (1)

16 6.3 0.38 0.15 0.9541)

18 5.6 0.73 0.31 0.15

20 5.0 0.72 0.51 0.21

Note.The results correspond to test cases of different valuesnth a fixed number
of grids N =50 in a fixed computational domain (0, 1)/Ax is the number of grids
used to resolve one wave period in space.

A. Periodic boundary conditions.The upwind and central schemes with periodic bour
dary conditions are tested in computing the wave equation in a fixed computational dor
(0, 1) using a fixed number of uniform gridé = 50. For each inner scheme, twenty run:
are made using different values of wave numbeso that the effects of grid resolution on
the numerical errors of the scheme can be examined. The number of grid points used tc
a single wave length in spacelig Ax, where the wave length Is = 27 /w. The solutions
are advanced in time in more than 10 periods for long time integration. Three scheme
used in spatial discretizations: (1) current seventh-order upwind explicit scheme 9-4
with « =36, (2) current seventh-order upwind compact scheme 7-3-3-1atl36, and
(3) fourth-order spectral-like upwind compact schemes 7-3-5-2.

Table | shows the.? errors of the numerical solutions using the three schemes for
runs of differentw. As w increases, the number of wave modes in the domain increases
there are less grid points in resolving each wave mode. The results show that the cor
7-3-3-1 scheme is more accurate than the explicit 9-4-1-0 for the current periodic prob
The upwind schemes 9-4-1-0 and 7-3-3-1, which have higher order formal accuracy
more accurate than the spectral-like 7-3-5-2 scheme for smalBut asw increases and
there are less grid points in resolving the waves, the spectral-like scheme becomes
accurate. Therefore, for the wave equation with periodic boundary conditions, the spec
like compact schemes with reduced formal order of accuracy have better overall resoll
than standard high-order schemes in resolving a wide range of wave modes. These r
are expected because the optimized lower-order schemes were derived based on the
equation with periodic boundary conditions.

B. Non-periodic boundary conditionsThe effect of numerical boundary schemes o
the overall accuracy in computations of the wave equation with non-periodic bounc
conditions is numerically tested. The non-periodic boundary condition is set at the
boundary as

u(0,t) = —sin(wnt), t>0. (83)



688 XIAOLIN ZHONG

TABLE Il
L* Errors of Solving Wave Equation with Non-periodic
Boundary Conditions

€, errors

w L/AX 9-4-1-0(a = 36) 7-3-3-1(a = 36) 7-3-5-2 (Lele)

2 50.0 0.65{6) 0.54 (-6) 0.10 (-4)

3% 30.0 0.13 ¢4) 0.10 (-4) 0.66 (-4)

5§ 18.8 0.23(3) 0.18 (-3) 0.76 (-3)

7§ 13.6 0.15 {-2) 0.12 (2) 0.38 (-2)

9§ 10.7 0.59 £2) 0.53 (-2) 0.13 (1)
11§ 8.8 0.18 (1) 0.17 (1) 0.35 (1)
13 7.5 0.47 (1) 0.45 (1) 0.85 (1)
151 6.5 0.11 0.11 0.20
17k 5.8 0.26 0.28 0.54
191 5.2 0.97 0.92 2.2

Note.The results correspond to test cases of different valueswith a fixed number
of grids N =50 in a fixed computational domain (0, 1).

Similar to the previous case, the wave equation is solved in a fixed computational dor
(0, 1) using 50 uniform grid points. Twenty runs are made using different valuessof
that the effects of grid resolution on the numerical errors of the scheme can be exam
The values of» are chosen such that the computational domain is not a multiple of the w
length. The solutions are advanced in time in more than 10 periods for long time integra
The three inner schemes in the previous case are used with the following boundary clos
(1) explicit 5,5,5,5-7-5,5,5,5 boundary schemes for the 9-4-1-0 explicit inner scheme,
compact 5,5,6-7-6,5,5 boundary schemes for the 7-3-3-1 compact inner scheme, ar
compact 4,4-4-4,4 boundary schemes for the spectral-like 7-3-5-2 compact inner sch
The fourth-order boundary schemes are used because the inner scheme is fourth
accurate and fifth-order boundary schemes are unstable.

Table Il shows the errors of the numerical solutions using the three schemes with boun
closures. The results show that the seventh-order upwind compact and explicit schems
much more accurate for small as expected. However, unlike the periodic casepas
increases, the accuracy of the spectral-like scheme is about the same as the non-opti
schemes. For this test case, the schemes of formally higher order accuracy are more ac
in the computations of a range of wave modes. When there are less grid points in reso
the wave modes, the spectral-like schemes do not work as well mainly due to the effec
the boundary closures. Meanwhile, the errors of the seventh-order explicit upwind sche
(9-4-1-0) are only slightly larger than the corresponding upwind compact scheme (9-4-

C. Grid refinements on orders of accuracyl he formal orders of accuracy of the current
upwind schemes are tested by computing the wave equation with adfixe?land three
sets of gridsN = 25, 50, 100. For a globapth order scheme, the error should be reduce
by a factor of 2 times when grid size is reduced by half. The results are shown in Table
The results in the table confirm the formal orders of accuracy of the schemes. The nume
stability also agrees with the eigenvalue analysis. The results also show that the acc
of the boundary closure dominates the overall accuracy of the schemes. For the 3,4-
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TABLE IlI
L! Errors of Solving Wave Equation with Non-periodic Boundary Conditions
Using Schemes with Numerical Boundary Closures

Inner schemes and B.C.’s N e e (N)/er(N/2)
Inner  7-3-3-1 (Centraly =0) 25 0.97 £3) —
BC 3,4,4-6-4,4,3 compact 50 0.354) 28
Order 4 100 0.25(5) 14
Inner  7-3-5-2 (Central, Lele’s Spectral-Like) 25 0.6%4() —
BC 4,4,4-4-4.4,4 compact 50 0.104) 63
Order 4 100 0.3346) 31
Inner  5-2-3-1 (Upwindg = —1) 25 0.11 ¢3) —
BC 4,4-5-4,4 compact 50 0.35-p) 32
Order 5 100 0.116) 32
Inner  7-3-1-0 (Upwindg = —6) 25 0.12 ¢3) —
BC 4,4,4-5-4,4 .4 explicit 50 0.40-6) 31
Order 5 100 0.1346) 31
Inner  7-3-3-1 (Upwindg = 36) 25 0.40 £4) —
BC 5,5,5-7-5,5,5 explicit 50 0.64-6) 63
Order 6 100 0.10<7) 64
Inner  9-4-1-0 (Upwindg = 36) 25 0.47 £4) —
BC 5,5,5,5-7-5,5,5,5 explicit 50 0.65-6) 73
Order 6 100 0.10<7) 64

Note.For each scheme, three sets of giitiare used in a fixed computational domain.

central compact scheme, the result is less accurate than the upwind 4,4-5-4,4 sct
because the central scheme is only third-order accurate.

Therefore, the numerical experiments on the linear wave equation confirm the acct
and stability of the new high-order upwind schemes. The fourth-order spectral-like o
mized compact scheme has better overall resolution than sixth-order upwind scheme
periodic problems. But the spectral-like scheme, which uses a wider grid stencil, is
as accurate as higher-order upwind schemes when boundary closure schemes are
non-periodic computational domains. These results suggest that for non-periodic flow
ulations, it is not worthwhile to lower the order of accuracy of the schemes in order to h
better resolution at high wave numbers in the inner schemes, because boundary cl
schemes cannot be included in the derivation of the optimized schemes.

Stability of 2-D Supersonic Couette Flow

Compressible Couette flow is a shear flow bounded by two parallel walls. While ste
solutions are one-dimensional functions of wall-normal coordinyatthe amplification
and decay of disturbances are two- and three-dimensional transient flows. The disturt
amplification or decay at finite Reynolds numbers can be analyzed by a normal-mode |i
stability analysis, which solve for weak perturbations in the form

q' = Re{q(y) €@V}, (84)

whereq’ represents perturbations of any flow variabi@gy) is the complex amplitude
function of the perturbations, is the wavenumber ir direction, andv is the frequency of
the disturbance waves. In the temporal linear stability analysssolved as an eigenvalue
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Numerical Solution

1.0 L . L s Y/h

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. \Variation of the steady base flow temperature profile for adiabatic lower wall Mith=2. The
numerical solution is obtained using a fifth-order upwind scheme using 121 grid points.

of the homogeneous boundary value problem for a given real value of
o= ow(a, Re My). (85)

The real part otv, Re{w}, represents the frequency of the disturbance modes, while -
imaginary part, Infw}, represents the temporal amplification rate of the disturbances. Wi
Im{w} is greater, equal to, or smaller than 0, a disturbance mode is unstable with fi
amplification, neutrally stable, or stable with finite damping, respectively.

In this section, the current fifth-order upwind schemes are used to compute super:
Couette flow aM,, = 2 in solving the nonlinear Navier—Stokes equations for both stea
and unsteady solutions. The unsteady numerical solutions are compared with the |
stability solutions of a supersonic Couette flow obtained by Hu and Zhong in [49]. The uf
wall is an isothermal wall while the lower wall is an adiabatic wall. The gas is assume
be a perfect gas withr = 1.4 andPr=0.72. The viscosity coefficient is calculated using
Sutherland’s law. The flow variables are nondimensionalized by their corresponding va
at the upper wall.

A. Steady flow solutions.The fifth-order explicit upwind schemes are used to compu
the Navier—Stokes equations with= —1 for the supersonic Couette flow. The steady solt
tions are compared with analytical solutions obtained by a shooting method which is se
order of magnitudes smaller in numerical errors [49]. The numerical simulation is condu
using several sets of uniform grids in order to evaluate the accuracy of the algorithm.

Figure 11 shows the steady temperature profile obtained by using a fifth-order upv
scheme with 121 uniform grid points. The numerical results agree well with the ex
solutions. The numerical errors of the steady flow simulations using the three sets of (
are listed in Table IV. The numerical errors for the fifth-order upwind scheme are of
order of 10°® using 31 grid points and.@x 107 using 61 grid points. The theoretical
ratio of the errors between the coarse and the fine grids is 32 for a fifth-order scheme.
numerical results in the table show that the numerical algorithms are able to maintain
high orders of accuracy.

B. Unsteady flow solutions.The fifth-order upwind scheme is applied to the unsteac
supersonic Couette flow for the development of initial disturbances to the mean flow.
initial conditions are the steady flow solutions plus disturbances obtained by the lir
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TABLE IV
Numerical Errors for Computations of Steady Supersonic
Couette Flow Using a Fifth-Order Upwind Scheme for the
Navier—Stokes Equations

Grids o llellx Ratio lIell2 Ratio
31 -1 6.5(7) — 1.7 7) —
61 -1 2.4 (-8) 27 4.2 9) 40

stability analysis in the form of Eq. (84). The subsequent unsteady flow field is obtai
by computing the nonlinear Navier—Stokes equations using the fifth-order upwind sche
The same stretched grids as those used in the linear stability calculations [49] are used
numerical simulations. The computational domain in the simulation is one period in ler
in the x direction. Periodic boundary conditions are used inxlirection. The Reynolds
number isRe,, = 1000. The initial disturbance wave has a dimensionless wave numbe
a =3, and the eigenvalue obtained from the temporal linear stability analysis is

o = 552034015848 0.132786378738 (86)

where a negative lfw} means that the disturbances decay in time with a dimensionl
frequency of Réw}.

Figure 12 shows the time history of the velocity perturbations at a fixed point in the tv
dimensional supersonic Couette flow. The DNS results are compared with the linear stal
prediction. The computation uses a»Q@00 grid. The figure shows that the instantaneot
perturbations of the flow variables for the two-dimensional numerical simulations of

0.0015

-2 0.0010 |

0.0000 |

Disturbance Variables
2
1

-0.0005

-0.0010 |

00018 N,
0 1 2 3 4 5 6 7 ¢

FIG. 12. Time history of velocity perturbations at a fixed point in the two-dimensional supersonic Coue
flow field (linear stability theory§u, andévo; DNS, su andév).
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FIG. 13. Distribution of instantaneous flow perturbationsyidirection in unsteady two-dimensional super-
sonic Couette flow.

nonlinear Navier—Stokes equations agree very well with the linear stability analy
Figure 13 shows the distributions of instantaneous flow perturbations iy thection
at the end of about six periods in time. Again, the DNS results agree very well with
linear stability results. Grid refinements studies have also been performed and the re
validate the fifth-order accuracy of the upwind scheme used in the calculations of the 1
dimensional Navier—Stokes equations.

The amplitudes of the disturbance waves decay as a function of time. For sufficiently
amplitude waves, linear stability analysis shows that the perturbation kinetic energy of
solutions is

E(t) =//%(u/2+v’2)dx dy= Eoe®*t, (87)

where Eq is the perturbation energy at=0. Figure 14 displays the time history of
In(E(t)/Ep) for the numerically computed perturbation energy and the analytical va
of the linear stability analysis in one wave period. Different number of gridpoints in the
direction are used to study the numerical accuracy of the simulations. The numerical re
using 100 gridpoints in the y direction agree very well with the linear stability resul
However, the numerical errors are accumulated in time when lesser number of gridpc
30 and 20 gridpoints, are used in the y direction.

Steady Hypersonic Viscous Flow over a Cylinder

After validation without the shock-fitting procedure, the new fifth-order upwind scher
(7-3-1-0 witha = —6) coupled with the shock-fitting procedure is then applied to the col
putations of steady two-dimensional hypersonic viscous flow over a cylinder, where t
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FIG. 14. Computed decay rate of perturbation energy for a fifth-order upwind scheme by using three

of grids in the y direction compared with linear stability analysis results in 2-D supersonic Couette flow f
(My =2.0, R.=1000.

is a bow shock in front of the body. Experimental results and accurate numerical solut
obtained by a shock-fitting spectral method [50] are available for comparison. The flow
ditions areM,, =5.73, Re,, = 205Q T, = 39.6698 K,T,, =21002 K,y = 1.4, Pr=0.77,
and cylinder radius =0.0061468 m.

Figure 15 shows a set of 8060 grids used in the shock-fitting calculations. The grid
are stretched in both the streamwise and wall-normal directions. Figure 16 compare
computed temperature contours for flow over a circular cylinder. The results of the
rent fifth-order upwind shock-fitting scheme compare very well with those of the spec
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FIG. 15. Computational grid for viscous hypersonic flow over a circular cylinder.
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FIG. 16. Comparison of computed temperature contours for flow over a circular cylinder. The upper |
contours are taken from Kopriva [50], and the lower half contours are computed by a fifth-order upwind sh
fitting scheme using a 80 60 grid.

method of Kopriva [50]. The pressure coefficients along the cylinder surface compute
the fifth-order shock-fitting methods are compared with experimental results and spe
results [50] in Fig. 17. Again, the solutions of the Navier—Stokes equations obtainec
the current fifth-order upwind scheme agree well with the spectral-method results.
differences between the numerical results and the experiments, which are consistent
other numerical results, may be due to the differences in flow conditions between the
periments and the simulation. The grid convergence of the results are tested by ref
the grids used for the simulation. Figure 18 compares the the surface pressure coeffic
along the surface for three sets of grids and shows that the results are highly accura
relatively coarse grids.

7. HYPERSONIC BOUNDARY-LAYER RECEPTIVITY SIMULATIONS

The new fifth-order upwind shock-fitting scheme (7-3-1-0 wits —6) is applied to the
numerical simulation of boundary-layer receptivity to freestream acoustic disturbance:
hypersonic flow past a parabolic leading edge at zero angle of attack. Perfect gas assun
is used for the flow. The hypersonic receptivity phenomena and the descriptions of the
conditions of the simulations can be found in [51]. The fifth-order upwind shock-fittil
scheme is used to discretize the equations in the non-periodic streamwise and wall-nc
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FIG. 17. Comparison of pressure coefficients along a cylinder surface.

directions. A Fourier spectral collocation method is used to discretize the equation
the periodic spanwise direction. In the shock-fitting algorithm, the derivatives of the sh
shapeH;, H;, H.¢, andH,, are needed. They are numerically evaluated using a sixth-or
compact central scheme shown in Egs. (37) to (41). The spatially discretized equation
advanced in time using an explicit Runge—Kutta scheme [42] for the perfect gas flow. (
refinements are used to ensure that both steady and unsteady solutions are grid indepe
In the simulations, two-dimensional steady flow solutions are first obtained with
freestream disturbances. Subsequently, the two-dimensional or three-dimensional
stream disturbances are superimposed on the basic flow solutions in front of the bow sl
The shock/disturbance interactions and generation of T-S waves in the boundary |
are simulated by solving the nonlinear Navier—Stokes equations in the two-dimensi
or three-dimensional flow fields. The freestream disturbances are assumed to be
monochromatic planar acoustic waves with wave front oblique to the center line of

20

o 40 x 30 Grids
"""" 80 x 60 Grids
160 x 120 Grids

0.0 L I I I L I ! i i
0 10 20 30 40 50 60 70 80 20

0 (deg.)

FIG. 18. Comparison of pressure coefficients along a cylinder surface. The results are obtained using
sets of grids.
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body in thex-z plane. The perturbations of flow variables in the freestream introduc
by the freestream acoustic waves before reaching the bow shock can be written ir
form

qéo — |quoo ei(kcosWx+ksinwzfa)t)’ (88)

where|q’| represents one of the flow variablgg)|, |v'|, [w’|, |p’|, and|p’|. Freestream
acoustic perturbation amplitudes satisfy the following relatiguis;, = € cosy, |v'| =0,
w0 =€ SINY, | P loc =Y M€, @and|p’|o = M€. The parametet represents the free-
stream wave magnitude. The angleis the angle of freestream wave with respect to th
X axis in thex-z plane, whergy =0 corresponds to two-dimensional planar waves. Tt
parametek is the dimensionless freestream wave number which is related to the din
sionless circular frequeney by o = k(cosyr + M_1). The dimensionless frequenéyis
defined aF = w*v*/U*2 x 10P. The body surface is a parabola giventy= b*y*2 — d*,
whereb* is a constant and* is taken as the reference length. A flow variable with a supe
scriptx is a dimensional variable, while dimensionless flow variables are denoted by
same dimensional notation but without the superseript

The flow and geometric conditions &k, = 15,Re,, = 60266, T} =192989K, p%, =
10.3 Pa, T =1000 K,y = 1.4, b* =40 1, d* = 0.1 m, and the nose radius of curvature
r*=0.0125m. The body surface is assumed to be a non-slip wall with an isothermal \
temperaturél ;.

Boundary conditions for flow variables at the wall surface, in the freestream, and in
exit boundary are needed for both steady and unsteady and unsteady flow simulatio
the hypersonic receptivity problem. At the wall surface, the velocity is specified by |
non-slip condition, the temperature is given by an isothermal condition, and the pres
is determined by a high-order polynomial extrapolation from the interior flow field. In tl
freestream, the steady or unsteady flow variables are specified in the calculations. The
variables behind the bow shocks are then calculated without any linearization by the s
fitting algorithm described in this paper. At the exit boundary, the flow is supersonic out:
of the boundary layer and is mainly parabolic inside the subsonic boundary layer. For
flow, a simple high-order polynomial extrapolation is used to determine the flow variakt
at the exit boundary. In order to ensure that such a boundary condition does not pro
spurious reflection of numerical noise back to the upstream of the computational flow fie
the simulations of the steady and unsteady flow for the receptivity problem are carriec
using two successive overlap computational zones similar to those shown in Fig. 28.
steady or unsteady solutions in Zone 1 are first computed until the solutions reach a s
state or time periodic state (for unsteady flows). Having finished the simulation in Zon
the simulations in Zone 2 are carried out using the solutions from Zone 1 as boun
conditions at the inlet. The use of the overlap-zone approach provides a way to eva
the magnitudes of possible numerical wave reflection at the exit boundary. If there i
spurious numerical reflection at the exit boundary, the solutions from the two zones ir
overlap region should agree with each other. The comparison of the results in the ov
region shows that the wave reflections at the exit boundary for the present test case
negligible at the exit of Zone 1.

Steady Mean-Flow Solutions

Steady two-dimensional solutions of the Navier—Stokes equation for hypersonic flow ¢
the parabola are obtained by advancing the solutions to a steady state without frees
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FIG. 19. Base flow solutions for a computational grid (upper figure) where the bow shock shape is obta
as the numerical solution for the freestream grid line, velocity vectors (middle figure), and entropy contours (I
figure).

perturbations. Figure 19 shows steady flow solutions for a set ok16280 computational
grid, velocity vectors, and steady entropy contours. The bow shock is obtained as the sol
for the freestream grid line. The velocity vector plot in the figure shows the developn
of the boundary layer along the surface. The entropy contours show the entropy |
developing at the edge of the boundary layer. The swallowing of the entropy layer by
boundary layer has been shown to play an important role in the stability and transitio
the boundary layer downstream [12].
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FIG. 20. Comparisons of steady pressy@ and vorticity (w) profiles behind the bow shock and on body
surface obtained by two set of grids (circles, 26020 grid; lines, 3206« 240 grid).

The accuracy of the numerical resolution of the mean flow using thex1&D grid
is evaluated by comparison with finer 32240 grid solutions. Figure 20 compares the
pressure and vorticity profiles behind the bow shock shape and on the body surface
two sets of solutions agree very well with each other, which indicates that the steady solu
are well resolved by these grids.

Boundary layer stability is strongly dependent on the variation of steady flow tempe
ture and velocities along the wall-normal grid lines, and their first and second derivati
Figure 21 shows the variation of base flow tangential nondimensional velagjty first
derivative %;), and second derivativ%%%) along a grid line normal to the parabola surfac
at a grid station. The grid refinements show that these steady solutions are grid indeper
This figure also shows that the flow distribution across the boundary layer for the pre
test case is very different from a hypersonic boundary layer over a flat plate. Specific
the velocities do not reach constant asymptotic states outside the boundary layer. Ther:
it is expected that the stability properties will be different from those obtained from a L
analysis which is based on parallel base flow assumptions.
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FIG. 21. Variation of base flow tangential velocity), its first derivative(ﬂ—;), and second derivative;%‘;)
along a grid line normal to the wall surface at the- —0.14 grid station.
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Receptivity to 2-D Disturbance Waves

After obtaining the steady basic flow solutions, the unsteady flow solutions are c
puted using the new fifth-order upwind scheme by imposing acoustic disturbances tc
basic flow in the freestream. Figure 22 shows the contours of instantaneous temper
perturbationT’, the Fourier amplitudeT’|, and the phase angler after the solutions
reach a periodic state for the case of freestream forcing frequencies=d1655 and
€ =5x 107*. The numerical solutions are obtained by using the 28@0 grids. The
instantaneous contours show the development of instability waves in the boundary |
on the surface. In general, the disturbance field between the shock and the body st
is a combination of the external forcing disturbance waves and the T-S waves genel
in the boundary layer. Figure 22 shows very clearly the development of instability wa
in the boundary layer along the surface because the instability waves are domina
the boundary layer near the surface. Meanwhile the waves immediately behind the
shock are mainly external forcing waves. On the body surface, both first and second r
waves are generated and propagated downstream along the wall. The first mode is
erated near the leading edge< 0.2). The amplitudes of the first mode are amplifiec
first and then decrease rapidly after reaching maximum values. After the first-mode
cay, the second-mode disturbances become the dominant mode. The decay of th
mode and the growth of the second modexat 0.2 are shown by a sudden change o
phase angles near the body surface at that location. The phase structure change
matically between the two modes; specifically the second mode has one more vari
across the boundary layer. The phase angle structure develops discontinuity lines acro
boundary layer as the higher modes develop. The contours of the Fourier amplitudes
show the switching of instability modes from region 1 to region 2 at aketD.2 on the
surface.

Again, a grid refinement is used to check the numerical resolution of the 180 grids
for unsteady DNS simulations. Figure 23 shows the distribution of the Fourier amplitude
the entropy perturbations along the body surface. The two distinct main regions of instat
waves are clearly shown. The variation of perturbation amplitudes of velectjtglong a
grid line normal to parabola surfacexat 0.239 is shown in Fig. 24. These two figures shov
that the unsteady solutions obtained by using two sets of gridsx22® and 160G 120
grids, agree very well with each other. The unsteady solutions are well resolved by the ¢
used in the calculations.

Local linear stability theory (LST) is used to identify the boundary layer eigenmodes :
to analyze the instability mechanism and the bow-shock effects [52]. The LST is use
obtain instability modes based on the numerically obtained basic flow between the t
and the bow shock. Figure 25 shows the first-mode eigenfunction amplitudes alonc
wall-normal direction ak = 0.5521 for the case of freestream forcing frequehkcy 1770
ande =5 x 1074, The DNS results agree very well with LST results inside the bounde
layer. The disagreement outside the boundary layer near the bow shock is expected be
the effects of the forcing disturbances are not included in the linear stability analysis.

For weak monochromatic freestream forcing waves, the generation of instability we
is expected to be linear with respect to the forcing amplitudes. Receptivity and stab
experiments [9] have shown the existence of high harmonics in addition to the wave
the fundamental frequency. Nonlinear higher harmonics are also found in the present
studies. Figure 26 shows the instantaneous entropy disturbances along the body surfe
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FIG. 22. Unsteady temperature perturbation contours for the case of 2-D freestream acoustic wa\

F =2655: instantaneous perturbatiofs (upper figure), Fourier amplitudd’| (middle figure), and Fourier
phase angler (in degrees) (lower figure).
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'''' Linear Analysis
Numerical
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FIG. 27. Time history of the instantaneous pressure perturbation at the point immediately behind the
shock at the center line for the casekef 40.

the case oF = 1770 and = 5x 10~*for the fundamental frequency & 1) and their second
harmonic (| = 2). The analysis of the results shows that receptivity of the fundamental mo
is governed by a linear mechanism, while the second harmonic is nonlinear.

In the unsteady simulations, the bow shock oscillates due to freestream disturbance
the reflection of acoustic waves from the boundary layer to the shock. Itis important tha
numerical simulation using the shock-fitting scheme resolves the unsteady shock mt
accurately. The current high-order shock-fitting method is found to be able to compute
unsteady flow fields and the unsteady shock motion very accurately. A simple way to cl
the accuracy of the numerically computed unsteady shock/disturbances interaction b
shock-fitting scheme is shown in Fig. 27, which shows the time history of the instantane
pressure perturbation at the point immediately behind the bow shock at the center
for the case ok =40. In the initial moment of imposing the freestream disturbance
there are no reflected waves from the undisturbed steady boundary layer. The frees
disturbance wave transmission relation can be predicted by linear theory such as that de
by Mckenzie and Westphal [53]. At a later time, the wave pattern changes becaust
disturbance waves enter the boundary layer and generate reflected waves back to the
The figure shows very good agreement between DNS and linear predictions on the pre
perturbation due to freestream disturbances.

Receptivity to 3-D Disturbance Waves

The receptivity of the hypersonic boundary layer to oblique three-dimensional freestr:
acoustic waves for the same two-dimensional basic flow has also been studied by [
Figure 28 shows the three-dimensional shock fitted grids using two computational zc
resolved by 16 120x 16 and 200 120x 16 grids, respectively. The unsteady flow
fields are generated by imposing an oblique freestream disturbance at an angieddf
with wave amplitude ok =5x 10-3 and F =177Q Figure 29 shows the contours of
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instantaneous perturbatiohafter the flow field reaches a periodic state. The instantanec
contours ok’ show the development of three-dimensional first-mode waves in the bounc
layer on the surface. The second mode region is also generated near the end of computz
Zone 1. The figure shows similar trends as two-dimensional wave developments, i.e.
first-mode amplification near the leading edge and the second-mode dominant downstt

8. CONCLUSIONS

This paper has presented a family of high-order compact and explicit upwind fin
difference schemes and a shock-fitting method for the DNS of hypersonic flows over b
bodies. The accuracy and the stability of the schemes have been tested and appl
numerical simulations of the linear wave equation and nonlinear Navier—Stokes equat
The numerical experiments and applications have shown that the current high-order st
fitting schemes are highly accurate for hypersonic boundary layer DNS studies. Spe
conclusions are listed below.

(1) The numerical experiments confirm the accuracy and stability of the current hi
order upwind schemes. They are stable with high-order boundary closure scheme:
their dissipation errors are smaller than conventional upwind schemes using upwind-
stencils.

(2) The new fifth-order shock-fitting schemes have been applied to the DNS stu
of the receptivity of a hypersonic boundary layer to freestream acoustic disturbance
is found that both first and second mode waves are generated in the hypersonic bou
layers. The first mode is always generated near the leading edge and is amplified b
decaying rapidly. The second mode is the dominant mode after the first mode decay.
eigenfunctions of the first mode obtained by DNS agree well with the LST results. The C
also shows that the generation of instability modes of the fundamental forcing freque
are linear, and the receptivity also generates nonlinear superharmonics.

(3) As a byproduct of the numerical experiments, a fourth-order spectral-like cen
compact scheme has also been compared with current upwind schemes. It is found th
spectral-like compact scheme has better overall resolution than sixth-order upwind sch
for periodic problems. But the spectral-like scheme is not as accurate as higher-order
optimized schemes when boundary closure schemes are used in non-periodic compute
domains.

APPENDIX: OTHER UPWIND SCHEMES

Third-Order Compact Schemes

aut

/ / ! 1 a
bi_qUi ; +biu+biau,, = H(ai—lui—1+aiui +a11Uiy1) — 4'h3(84x

)-+...’ (89)

whereg; 11 = £45— 30, bj+; = 15F 150, 8 = 60w, andb; = 60. The 3-1-3-1 schemes are
third-order upwind when > 0, and are fourth-order central when= 0. The recommended
value fora isa =1/4.

Third-Order Explicit Schemes

u/_izz: Ui, — 3 aut + (90)
'~ hp k:_za”k T \a%x ), ’
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whereagj o =F5 + ga, 8j+1 =140 — 10x, 8 = 15«x, andb; =60. The 5-2-1-0 schemes
are third-order upwind when > 0, and they are fourth-order central wher=0. The
recommended value farisa =1/4.

Seventh-Order Compact Schemes

aud
28X

3
! 1 o
bi_1ui_; +biuf +bigui,, = h k;3&+kui+k B §h7(

)i+m, (91)

wheregj.s=F5+ &0, aro=+3— 1o, 11 =432 B0 by = L2 F 20, 8 = 3o, and
b =60. These 7-3-3-1 schemes are seventh-order upwind compact schemeas when
and are a eighth-order central compact scheme whe. The recommended value fer
isa =36.

Seventh-Order Explicit Schemes

u'_iz‘l: U — 2R u + (92)
'~ hp k:_4a|+k i+k 8ib, %% ). )

whereai.a = T3 + 550 823 =12 — 30, 8o = F12+4 550, 811 = +48— Ho, 8 =

4%0(, andb; = 60. These 9-4-1-0 schemes are seventh-order upwind explicit schemes v
a > 0, and are a eighth-order central explicit scheme wherD. The recommended value
for o isa =36.

For the seventh-order upwind compact (7-3-3-1) and explicit (9-4-1-0) schemes,
desirable that the boundary schemes are sixth-order accurate so that the overall scl
are seventh-order accurate. However, the required damping paraméoerstability are
too large (in the range of #pfor both schemes. Such large valuesxokill lead to very
large numerical dissipation errors. Therefore, the requirement of the order of boun
schemes for the seventh-order inner schemes is reduced to fifth-order in order to o
stable boundary closure at reasonable value of damping coefficidiite corresponding
schemes are 5,5,5-6-5,5,5 for compact schemes and 5,5,5,5-6-5,5,5,5 for explicit schi
The formal global order of accuracy of the seventh-order interior schemes with fifth-or
boundary closure are formally sixth-order accurate. The upwind schemes are stable
o = 36 for both schemes.
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