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Hypersonic Boundary-Layer Stability over Blunt Leading Edges with Bow-Shock
Effects
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Abstract

The stability of the hypersonic flow over a parabolic
leading edge is numerically investigated using linear
stability analysis accounting for the existance of shock
waves in comparison with direct numerical simulations.
The linear stability analysis is performed using a global
spectral collocation method accounting for the shock
effects by using Rankine-Hugoniot shock conditions on
the upper boundary. It has been confirmed that the
linear stability of the hypersonic flow between a bow
shock and a parabolic leading edge has a new fam-
ily of modes, namely shock modes, in addition to the
first and higher modes found in the flat plate boundary
layer case. The shock modes can be unstable at certain
range of frequencies before the boundary layer first and
higher modes begin to dominant. The stability charac-
teristics of the shock modes and boundary layer modes
are investigated. It is found that the shock modes and
the first modes have rapid changes in their amplifica-
tion rates when their wavenumbers cross. The effects
of the Reynolds number are also investigated. Second
and higher modes are found to be the dominant modes
in the high Reynolds number case.

1 Introduction

The prediction of stability and transition of hypersonic
flows is critical to the accurate calculations of aero-
dynamic forces and heating rates for hypersonic vehi-
cles. For hypersonic flow over blunt bodies, many fac-
tors, such as bow shocks, surface curvature, entropy
layer, nose bluntness, and real gas effects, influence
the characteristics of hypersonic flow instability. Early
experimental results on hypersonic transition include
the work by Kendall t14-' and Demetriades ™. Stet-
son et al. t29-' investigated the stability of the laminar
boundary layer on a blunt, 7-degree half angle cone
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at MOO = 8 experimentally. It was found that small
nosetip bluntness make significant changes in the sta-
bility characteristics of the boundary layer comparing
to sharp cone. Namely, the critical Reynolds num-
ber in the case with small bluntness is found to be
much higher than the case with a sharp cone. They
also found that disturbances grow outside the bound-
ary layer, in the entropy layer, indicating the existance
of an inviscid instability. A series of theoratical and
numerical work were conducted on the supersonic and
hypersonic instability problems in comparison with the
experimental results. Reshotko et al. ̂  used a mul-
tiple scales method to analyze the spatial stability of
a laminar supersonic flow over a blunt plate. Cowley
et al. ̂  investigated the instability of a compressible
flow past a wedge in the hypersonic limit using asymp-
totic analysis. Several authors t22' ̂  ^ ̂  compared
numerical linear stability results with Stetson's exper-
imental results. They showed qualitative agreement
with the experimental results. However, the spatial
amplification rates of the second modes resolved by
numerical approaches show much higher maxima than
the experimental results. Kufner et al. '-16-' studied the
effects of mean flow variations on the instability of hy-
personic flow past blunt cones in resolving the discrep-
ancies in the amplification rate. They found that the
discrepencies were not due to the use of. different mean
flow solutions. Indeed, the discrepancies may due to
the known limitations of the theoratical and numerical
linear stability approaches as well as inaccurate main
flow solutions.

Recently, direct numerical simulations (DNS) of hy-
personic flow over a parabolic leading edge including
the effects of boundary layers and shock layers were
conducted by Zhong *-36' who studied the generation
of instability waves due to freestream acoustic dis-
turbances for a two-dimensional Mach 15 flow over
a parabola by numerically solving full Navier- Stokes
equations using a new explicit fifth-order shock fitting
upwind scheme. Better understanding of the stability
characteristics of the hypersonic parabolic body flow
can be achieved if the overall wave phenomena from
DNS can be decomposed into linear and non-linear
parts, and the effects of the shock wave, curvature, and
three-dimensional waves can be identified. The numer-
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ical linear stability tools have the flexibility to study
the effects of curvature, shock boundary conditions, as
well as wave angles. A comparison between the DNS
and the linear stability (LSI) results may provide in-
sights to the stability characteristics of the flow.

Since the flow of interest is confined between the
body surface and the bow shock, it is expected that
both boundaries will affect the stability characteris-
tics. The effects of the shock boundary conditions
were evident from the DNS results, ̂  Most of the
research done before regarding the linear stability of
the compressible flows, however, ignored the presence
of a shock and used free stream (homogeneous) con-
ditions at the far field or the asymptotic conditions
just outside the boundary layer. For the hypersonic
parabolic body case where important wave phenomena
are observed between the viscous boundary layer and
the shock, the shock plays a vital role and introduces
additional flow features, such as entropy layer, to the
flow. It is therefore reasonable to use appropriate shock
boundary conditions instead for stability analysis.

It is known that there exist wave interactions among
the shock wave, boundary-layer originated instability
waves and the free stream disturbances for hypersonic
flow instability. The theoretical approach in analyzing
the problem was developed by Ribner \-26' and McKen-
zie et al. ̂ ^ Anyiwo et al. '-1-' used this approach in
analyzing the turbulence amplifications in the shock
wave/boundary layer interaction. The main result of
this theory is that the interaction of any mode, for in-
stance, an acoustic wave with a shock wave, produces
all three modes, an acoustic mode, a vorticity mode and
an entropy mode. A recent study by Duck et al. ^
also led to similar conclusions. More recent approach of
solving the problem involves direct numerical simula-
tions. Zang et al. \-33> examined the interaction of plane
waves with shocks using the DNS approach and con-
firmed the linear theory results. In the aforementioned
investigations, disturbances were considered to origi-
nate ahead of the shock. In the hypersonic parabolic
body case, however, the disturbances come from be-
hind the shock. The first attempt to study the effects
of a shock on the boundary layer stability was probably
Petrov's work ™". In solving the compressible bound-
ary layer linear stability problem, he replaced the in-
viscid asymptotic eigensolution outside the boundary
layer by the linearized steady Rankine-Hugoniot con-
dition for the normal momentum equation as the shock
boundary condition. Insodoing, he obtained solutions
for a two-dimensional flow over a wedge in the hyper-
sonic limit. The triple-deck theory was used by Cowley
et al. ̂  along with the linearized Rankine-Hugoniot
conditions to investigate the influence of a shock on
the stability of boundary layer flow over a wedge. A

key result obtained was that the presence of a shock-
allows more than one unstable viscous mode for rela-
tively small ranges of frequency. Recently. Seddougui
et al. I-2 ' also found multiple viscous unstable modes
in the linear stability analysis of hypersonic flow over
a sharp slender cone with an attached shock using the
triple-deck structure approach.

Chang et al. ™ started from the unsteady Rankine-
Hugoniot conditions to obtain a set of perturbation
equations accounting for the effect of shock veloc-
ity due to the perturbed wave originated from in-
side the boundary layer. This set of equations were
then imposed as boundary conditions at the shock
for the quasi-parallel linearized stability equations for
compressible flows. They used a multidomain spec-
tral method and a fourth order compact difference
scheme to solve the stability equations. Their results
showed that the shock has little effect on the boundary
layer stability (subsonic first and second mode distur-
bances) when the shock is located outside the bound-
ary layer edge. The presence of the shock induces un-
stable supersonic modes at finite Reynolds numbers
which have oscillatory structure between the boundary
layer and shock. When the shock is sufficiently close
to the boundary layer edge, the shock influences the
wave modes with finite disturbance amplitude near the
shock. Stuckert f30-' used similar approach as above in
solving the linear stability problem for hypersonic flow
over a sharp cone.

This paper studies the linear stability of hypersonic
flow over a parabolic body in conjunction with DNS
simulations. In the present study, the formulations
of the temporal and spatial linear stability equations
followed Malik '•23-' closely. The results for the spa-
tial hypersonic parabolic body problem, are mostly ob-
tained using the spectral collocation method. Shock
jump conditions are enforced following the formulation
by Chang et al. *-2> closely. To better approximate the
physical conditions in the hypersonic parabolic body
problem, in addition to the shock jump conditions, the
basic flow normal velocity (V) terms are not neglected
in the linear stability analysis. Linear stability results
with shock jump condition for the hypersonic parabolic
body problem are then presented along with DNS re-
sults with a focus on the fundamental wave phenom-
ena. Specifically, LST results are used to identify the
wave modes found in DNS. The stability characteris-
tics of the important modes, including the effects of
wall cooling, wave angle, and Reynolds number are also
discussed.
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2 Formulation

A. Governing Equations

The linear stability is considered for compressible
viscous flow confined between two boundaries located
at y* =0 (lower boundary) and y* = L* (upper bound-
ary), where the superscript "*" represents dimensional
quantities. In the Cartesian coordinates, the x*, y*, z*
coordinates are those in the stream wise, wall-normal,
and spanwise directions respectively. The gas is as-
sumed to be a perfect Newtonian gas. The flow vari-
ables at the upper boundary (just behind the shock)
are denoted by a subscript "e". In the case of hyper-
sonic flow over parabolic bodys, the upper boundary is
the shock wave, while the lower boundary is the body
surface. The temperatures and velocities at the bound-
aries are computed together with the basic flow profiles.
The full three-dimensional Navier-Stokes equations for
compressible flow are used for the basic flow. The gov-
erning equations and the nondimensionalization details
can be found in Ref. [11] The dimensionless variables
are represented by the same symbols as those used for
the dimensional variables but without the superscript
"*". The Reynolds number is defined as

C. Linear stability equations

The linear stability analysis is based on a normal
mode analysis of the linearized perturbation equations
of the three-dimensional Navier-Stokes equations. The
LST formulas presented in this paper are for general
compressible flows with parallel steady flow fields. The
perturbation equations are derived by representing' the
instantaneous flow variables as a sum of a basic flow
solution and a small fluctuation quantity, i.e.

« = U_(y)+u'(x,y,z,t)
v = V(y) + v'(x,y,z,t)
w = w'(x,y,z,t)
p = p_+p'(x,y,z,t)
T = T(y)+T'(x,y,z,t)

(3)

Substituting Eq. (3) into the nondimensional form of
the governing equations, and dropping the nonlinear
and high-order terms yield a set of linear differential
equations for the perturbation variables. Details of the
linear perturbation equations and other formulations
can be found in Malik. '23-" In the normal mode analy-
sis for the linear disturbances, the fluctuations of flow
quantities are assumed to be represented by normal
harmonic waves of thfe following form:

Re =
K, v',P>,r, «/]tp

p ( y ) , f ( y ) , w ( y ) ] t r (4)

and the Mach number is

Me = u:.
(2)

where R* = c* - c*, c* is the specific heat at constant
volume, and 7 = 1.4 is the ratio of specific heats. The
Prandtl number is defined as Pr = /i*c*/fc* and is
assumed to be 0.72.

B. Basic flow solutions

Basic flow solutions for the hypersonic flow over a
parabolic leading edge was obtained by Zhong' ' by
using a new high-order shock-fitting scheme. Note
that the DNS and the linear stability analysis share
the same high-accuracy basic flow solutions. Since the
wave patterns are quite complex both close to the wall
and to the shock, a natural choice of stretching function
for the linear stability analysis is a cosine function. The
basic flow at the collocation points are then obtained
by using a high order interpolation scheme.

where a and /? are the wavenumbers in x and z direc-
tions respectively, and u is the frequency of the distur-
bance waves. These parameters are in general complex
numbers. The complex amplitude eigenfunction of a
typical flow variable, say u, is u ( y ) . Substituting Eq.
(4) into the linearized perturbation equations leads to a
homogeneous system of ordinary differential equations:

(5)

where D is the derivative operator in y direction,
i.e., D = d/dy and D2 = d2/dy2. In the
equation above, $ is a vector defined as $ =
[ u ( y ) , v ( y ) , p ( y ) , f ( y ) , w ( y ) ] T . A, B and C, which are
5x5 matrices, are functions of a, /?, w, Re, M^, and
the basic flow solutions. The detailed expressions of
matrices A, B and C can be found in Ref. [23], and
they are not repeated here. In solving the linear sta-
bility problem for the hypersonic parabolic body case,
where the normal direction basic flow velocity V is not
very small comparing to U, it is reasonable to add the
terms with V ignored by the parallel assumption back
to matrices A, B and C. These extra terms can also
be found in Ref. [11].
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D. Linear stability boundary conditions

In hypersonic boundary layer stability problems, no-
slip conditions apply at the body surface, i.e.,

where harmonic wave forms are used in consistency
with the linear stability equations. The complete de-
scriptions of shock jump conditions can be found in
Chang w and Hu [10]

u(0) = t)(0) = u)(0) = f(0) = (6)

At the bow shock, shock conditions must hold. We
followed the derivations from Chang ' * closely for the
shock jump conditions. For a shock given by J/Q =
f ( x , z , t ) with the time averaged shock position y0 =
f ( x ) and the local shock slope a = tanO = d f / d x , the
jump conditions across the shock are:

E. Temporal and spatial global linear stability
problems

The homogeneous equation system (5) along with
proper boundary conditions form an eigenvalue prob-
lem. When a temporal linear stability problem is con-
sidered, a set of real-value a and /3 is given, u> is solved
for as an eigenvalue problem given by Eqs. (5) and (6):

(7)
u = u(a, /?, Re, M0 (13)

Vectors Q, E, F, G are denned by

Q
E
F
G

(p,pu,pv,pw,e)tr

(pu, pu2 + p, puv, puw, (e + p)u)tr

(pv, puv, pv2 + p, pvw, (e + p)v)tr

(pw, puw, pvw, pu>2 + p,(e + p)w)tr

,(8)

where

e= 7 — 1 (9)

The jump of any quantity <j> across the shock is denoted
by

(10)

where the subscripts I and 2 denotes the conditions
ahead and behind the shock wave, respectively. Equa-
tion (8) is the unsteady Rankine-Hugoniot condition
which governs the unsteady motion of a shock wave.
The position function of the shock can be perturbed
according to

(11)

We assume that Eq. (8) is valid at y = / since for small
disturbances |/'| « |/|. We also assume there is no
disturbances ahead of the shock. The disturbances in
the boundary layer or shock layer can not penetrate
through the shock because the flow is supersonic out-
side the shock layer. A normal mode analysis to Eq(8)
leads to

a(E] - [F] = 0 (12)

Meanwhile, The amplitude of the disturbance modes,
[u(y), v(y), p(y), f ( y ) , w ( y ) ] t r , is solved as an eigen-
function of the boundary value problem. The real part
of u, Re{w}, represents the frequency of the distur-
bance modes, while the imaginary part, /m{w}, rep-
resents the temporal amplification rate of the distur-
bances. When Im{u)} is greater, equal to, or smaller
than 0, a disturbance mode is unstable with finite
amplification, neutrally stable, or stable with finite
damping, respectively. We also define a complex wave
(phase) velocity c of the disturbance waves as c = w/o.
The disturbance waves are three dimensional in gen-
eral. Two-dimensional disturbance modes correspond
to a special case of /? = 0.

In order to compare with the DNS results, spatial
stability problem is solved in conjunction with the
shock boundary conditions. In a spatial stability prob-
lem, real-valued u and /? are assumed. While a is the
complex eigenvalue to be solved for. The real part
of a, ar, represents the spatial frequency of the dis-
turbance modes, while the imaginary part, a,-, repre-
sents the spatial amplification rate of the disturbances.
When —a,- is greater, equal to, or smaller than 0, a
disturbance mode is unstable with finite amplification,
neutrally stable, or stable with finite damping, respec-
tively.

Two linear stability numerical codes have been de-
veloped, one uses the fourth-order finite-difference dis-
critization method, and the other uses the spectral col-
location discritization methods. The detailed descrip-
tions of these two methods can be found in Hu et al., *-10*
and will not be repeated here. Both methods are global
eigenvalue methods providing all possible eigenmodes.
Both methods can be used to solve for either the tem-
poral or the spatial eigenvalue problems. For the tem-
poral stability problem, discretizing Eq. (5) using the
fourth-order finite-difference method or the spectral
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collocation method, along with the proper boundary-
conditions, leads to a matrix eigenvalue problem:

(14)

where w is the eigenvalue. The whole eigenvalue spec-
trum and eigenfunctions can be obtained numerically
by solving Eq. (14) using the QZ or QR eigenvalue al-
gorithm of the IMSL computer subroutine library.

The spatial eigenvalue problem is nonlinear in the
linear stability equation Eq. (5) due to the viscous uxx

terms. Malik '23^ has shown that the spatial problem
can be fairly accurately approximated by dropping the
a2 terms in the global eigenvalue calculations resulting
a linear problem for a.

(15)

More accurate spatial stability solutions can be ob-
tained by using local iterative methods based on the
global results. The spatial results shown in the follow-
ing are the global method results. Caster's transfor-
mation

cti = - dar- —
OU>r

(16)

are three main aspects of the new method for hyper-
sonic flow DNS: a new shock fitting formulation, new
upwind high-order finite difference schemes, and the
recently derived '34-' third-order semi-implicit Runge-
Kutta schemes. The review of other current DNS
works, the details of the new method, and the results
of evaluation of numerical accuracy of the new schemes
can be found in Ref. [35].

The receptivity of hypersonic flows to free stream
acoustic waves is investigated here as shown in a
schematic Fig.l. In general, three dimensional un-
steady flow should be considered in the DNS stud-
ies since the most unstable first mode in hypersonic
boundary layers are oblique three-dimensional insta-
bility waves '-17-', though the most unstable second
mode is two dimensional. Presently, only the two-
dimensional instability waves in hypersonic bound-
ary layers are considered as a first step of the DNS
of three-dimensional hypersonic boundary layers over
blunt bodies. The free stream disturbances are planar
acoustic waves with a fixed frequency, and the body
is a parabolic leading edge. The generation of distur-
bance waves in the boundary layer are studied based
on the DNS results. The numerical accuracy of the
DNS results for such hypersonic boundary layer recep-
tivity have been evaluated by grid refinement studies
and have been reported in Ref. [35]. These test re-
sults are not presented here. The detailed results and
discussion regarding DNS can be found in Ref. [35]

can also be used to transfer the temporal stability re-
sults to the corresponding spatial stability results.

3 DNS of Hypersonic Flow

The direct numerical simulation approach studies the
transitional boundary layers '-15-' by numerically solving
the time-dependent three-dimensional Navier-Stokes
equations for the temporally or spatially evolving insta-
bility waves. Such simulation requires that all relevant
flow time and length scales are resolved by the numeri-
cal solutions using highly accurate numerical methods.
One of the difficulties in hypersonic flow DNS is that
high-order schemes are required for the direct simula-
tions, however, high-order linear schemes can only be
used for the spatial discretization of the equations in
the flow fields without shock waves.

In Ref. [35], a new high-order (fifth and sixth order)
upwind finite difference shock fitting method for the
direct simulation of hypersonic flow with a strong bow
shock and with stiff source terms is presented. There

Numerical Accuracy of LST
Results

The two linear stability codes using the fourth-order
finite-difference method and the spectral collocation
method were first validated by comparing their solu-
tions with those of Malik '•23-' for the linear stability of
the flat-plate compressible boundary layer. The com-
parison of the present numerical codes with Malik's
numerical schemes are fairly good. The details of the
comparisons can be found in [12].

For the hypersonic parabolic body case, a grid refine-
ment study is done locally at one station with 120 and
240 grid points. Table 2 shows the relative errors of the
shock mode and the first mode when the number of the
grid points of the basic flow solutions and LST analysis
increases from 120 points to 240 points. The relative
errors for the spatial frequency ar of both modes are
on the order of 10~10 while those for the amplification
rate a,- are on the order of 10~6. These results indicate
that the basic flow solutions from DNS satisfy the LST
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requirement. They also suggest that LST calculations
can be carried out with 120 grid points for the current
case with reliable accuracy.

Caster's transformation is also used to ensure the
accuracy of both the temporal and spatial code. Since
the spatial code solves for all the eigenvalues ar, on for
a given real u, and the temporal code solves for all
the eigenvalues wr,w,- for a given real a, one can take
one specific spatial mode from the spatial eigenvalue
spectrum and use the real part of the mode ar as the
input for the temporal code to see if the corresponding
uir is retrieved by the temporal code or vice versa. For
example, at w = 133649.4ffz, the first mode from the
spatial code is ar = 30.704965, and a; = 0.17596984.
If one takes a = 30.704965 for the temporal code, the
resulted ur is only 0.04% away from the w used in the
temporal code. When a second order central difference
formula is used to approximate the partial derivative in
Caster's transformation Eq. (16), with Aa being 0.1%
of a, the resulted on from the temporal results is 14%
from the spatial code. The error may be partly due to
the fact that current global spatial code ignores the a2

terms in the disturbance equations to reduce compu-
tational costs. The second order approximation may
also be considered as a source of error. The dropping
of the a2 terms is justified as a fast way to solve for
the global spatial spectra ^3'. For very accurate spa-
tial eigenvalue solutions, local shooting methods are
recommanded. From the above example, one sees that
the accuracy of the temporal and spatial codes is fur-
ther verified with Caster's tranformation.

schemetic of the flow is shown in Fig. 1. The free
stream flow conditions are:

Mf = 15, Tf* = 192.989A", Tw' = 1000A",
T/ = 288A', 6* = 40m-1, d* = O.lm,
fi* =0.1784x lQ~4kg/ms,
Re} - Poo*uf*d*/nf* = 6026.55.

(18)

Note that low Reynolds numbers are chosen so that
effective DNS simulations can be conducted. The lin-
ear stability analysis shares the same basic flow solu-
tions with the DNS simulation. Since the linear sta-
bility analysis has to be conducted station by station,
the nondimensionalization is done with respect to local
shock layer edge values. The Reynolds number used in
the calculations is the local Reynolds number R based
on the local length scale. A more standard length scale
S(s) is used to scale the wave numbers and frequencies.
S(s) is defined as

(19)

where s is the distance from the leading edge as seen
in Fig.l. The Reynolds number based on this length
scale 5 is R. A non-dimensional frequency F is also
introduced which is difined as

(20)

5 Results

5.1 Flow conditions

A list of local flow parameters, including R, shock dis-
tance, and Ue corresponding to the station number, are
given in Table 1.

The receptivity of a two-dimensional boundary layer to
weak freestream acoustic disturbance waves for a Mach
15 hypersonic flow past a parabolic leading edge at zero
angle of attack are considered. In the DNS simulation,
the freestream disturbances with fixed frequencies are
superimposed on the steady basic flow to investigate
the development of waves in the boundary layer with
the effects of the bow shock interaction. The body
surface is a parabola given by

(17)

where 6* is a given constant and d* is the reference
length. The body surface is assumed to be a non-
slip wall with an isothermal wall temperature Tw". A

5.2 LST and DNS comparisons

Due to the local nature of LST, comparisons of the dis-
turbance eigenfunctions between LST and DNS results
have to be made locally at each stations. Since the lin-
ear stability codes invoke parallel flow assumption (ex-
cept regarding V terms), the body curvature and the
pressure gradient which exist in DNS are ignored in the
current analysis. Figure 2 shows the basic flow velocity
and pressure profiles in the local wall-normal direction
at various locations. The normal velocity V, shown
as un in the figure, is about 10% of the streamwise
velocity. Therefore, in the linear stability calculation,
V and its associated terms are not ignored. A favor-
able pressure gradient is clearly present in the flow as
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opposed to the constant pressure assumption made in
the LST codes. It is also seen that the pressure profiles
approach that of the flat plate boundary layer further
downstream. p ( d u / d y ) profiles are shown in the bot-
tom figure of Fig. 2. The generalized inflection points
do exist in the flow.

A common forcing frequency is enforced in DNS.
This frequency is also enforced locally at each sta-
tions in the linear stability analysis. Although a range
of forcing frequency is studied with LST, compar-
isons with DNS are made at two forcing frequencies,
F = 2655, and Q.2F. The DNS disturbance fields
visualized with instantaneous contours of Re{v}' for
the two cases are shown in Figs. 3 and 4 respectively.
For the high forcing frenquency case, the corresponding
spatial frequency is relatively high. Similarly, the cor-
responding spatial frequency is low for the Q.2F case.
Previously, some comparisons between DNS and LST
were done for the F = 2655 case <-ll\ The focus of
current work is the F = 531 case.

The basic flow solutions from DNS indicate that the
local streamwise velocity profiles deviate from the flat
plate boundary layer case especially close to the shock.
For conveniance, the bacis flow close to the wall is ref-
ered to as the boundary layer and that close to the
shock the shock layer. The pressure and velocity dis-
turbance p' and u' are chosen to be the parameter of
comparisons between DNS and LST. The DNS distur-
bance fields, shown in Re{v'} contours in Figs.3 and 4
indicate that there are at least two distinctive wave pat-
terns in the flow field. One pattern matches with the
boundary layer modes which originate from the bound-
ary layer and propagate along the wall. The other pat-
tern is quite new and represents wave propagation close
to the bow shock. Notice that the waves propagating
close to the shock wave form certain angles with respect
to the body surface.

The eigenvalues and eigenfunctions of the distur-
bances at each stations are the LST results. Figure 5
shows a typical spatial eigenvalue spectrum at station
14 with R = 143.04 and F = 531. The spectrum with-
out shock boundary conditions is also shown. There are
two distinctive families of modes in the spatial spec-
trum. Modes in the lower left branch correspond to
the boundary layer modes, including first, second and
higher modes. Their eigenfunctions Re{p} and Im{p}
for the first three modes are shown in Fig. 6. The
unstable mode ar = 31.201271, a,- = -0.076501078
is the first mode, and is the right most mode in the
left branch. Similarly, the lower right branch modes,
including the least stable mode, which is just to the
right of the first mode with ar = 32.032739, a,- =
0.002061067, seem to have distinctive features in the

shock layer, are named shock layer modes. The eigen-
functions for the first three shock layer modes are
shown in Fig. 7. It is found that depends on the forc-
ing frequency and the Reynolds number, the dominant
boundary layer modes can be the first modes, the sec-
ond modes and higher modes. In the cases studied
so far, the only unstable shock family modes are the
shock modes. Notice that eigenfunctions of the bound-
ary layer modes for this flow deviate from those for the
flat plate boundary layer case in the shock layer. This
deviation is however expected.

For the case of F = 531, the evolutions of shock
modes, first modes and higher modes take place in a
much longer region in the streamwise direction than
the F = 2655 case. In the mean time, the development
of the boundary layer modes in the normal direction
is affected more by the shock. Figures 8, 9 and 10
show the evolution of disturbances in \p\ from DNS in
comparison with the shock modes and the first modes.
The wavenumbers and amplification rates of the shock
modes and the first modes are close to the disturbance
resolved by DNS. Therefore, only these modes are com-
pared with the DNS results. In each of the three fig-
ures, the DNS results are shown in the top row. The
shock mode eigenfunctions are shown in the middle
row, whilst the first "mode eigenfunctions bottom row.
In Fig. 8, the results at stations 1,3,5,7,and 9 are com-
pared. The first mode eigenfunctions at station 1 and 3
are not shown because they are very stable comparing
to the DNS results and the shock modes. The ini-
tial comparisons at stations 1,3, and 5 are clearly not
good. This is due to the fact that the receptivity and
the initial growth, which are observed experimentally
and resolved by DNS, can not be addressed with LST.
In fact, close to the leading edge, due to the different
natare of the basic"flow, the linear stability equations
can no longer represent the physical stability mecha-
nism properly. At stations 5 and 7, the LST shock
modes start to agree with the DNS results qualitatively.
This trend becomes more clear at station 11 shown in
Fig. 9. Figure 9 shows the results from station 11 to
19. At stations 11, 13, and 15, the DNS results show a
change of dominant modes from the shock modes to the
first modes. First mode signiture starts to develope in
the shock mode region. From station 15 on, including
the stations 21 to 29 shown in Fig. 10, it is quite clear
that the first modes are the dominant modes from the
DNS results. However, there is still shock mode influ-
ence on each station. Notice that at station 17, the
eigenfunction of the shock mode show a dramatic de-
viation from those at the neighboring stations. This
phenomenon is not yet well understood and is asso-
ciated with the wavenumber crossing effects discussed
later.
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Good comparisons in eigenfunctions are obtained in
the region away from the leading edge where recep-
tivity, curvature and the strong initial growth of the
waves have lesser effects. They are shown in Figs. 11
and 12, where the magnitude profiles of streamwise ve-
locity and pressure disturbance of the first mode are
compared at station 19, R = 179.38, F = 531. In-
deed, the first modes are unstable at certain stations
at this frequency and remain the dominant modes close
to the wall. Another example is shown in Figs. 13 and
14 at station 21 with R — 192.54. To compare the
wavenumbers of the DNS results with the LST results,
a wavenumber evaluation scheme is used to extract the
wavenumber from the DNS surface entropy data. The
determination of the wavenumber is based on the fact
that waves propagate with linear phase in the stream-
wise direction and a 360° phase change corresponds
to a propagation of one wave length. The results are
compared with LST first mode, second mode and shock
mode wavenumbers in Fig.15. It can be seen that at
the initial stage, the wavenumber from DNS experi-
ence a sharp increase. Linear stability analysis is con-
ducted away from the initial region. Away from the
initial region, the wavenumber of the first mode match
closely with the DNS wavenumber at the wall. The
wavenumber of the shock modes from LST is also close
to that of the first modes. This can be observed graph-
ically from the DNS disturbance field shown in Fig.
4 which indicates that the wave pattern close to the
shock has roughly the same wavenumber as that close
to the wall. This agreement provides us a nessesary
condition for the eigenfunction comparisons shown in
the previous figures. The amplification rate path com-
parison is shown in Fig. 16. The DNS amplification
rate is evaluated at the wall with a third order scheme.
The poor comparison can be attributed to the strong
initial growth of the disturbance waves captured by
DNS which agrees with the experimental observations.
LST, however, cannot predict this phenomenon. Non-
theless, the amplification rate path of different modes
from LST is further shown in Fig. 17. It is clear that
LST predicts the change of dominance of the boundary
layer modes in the streamwise direction from the first
modes to higher modes. Under the current situation,
the flow field is quite stable except for a short range
where the first modes become unstable.

5.3 Stability characteristics

It has been shown so far that both LST and DNS re-
solve boundary layer modes and shock layer modes.
However, the stability characteristics of these modes,
especially how the boundary layer modes are modified
under the current flow conditions, are not yet known.

Specifically, the effects of wave angle, wall-cooling, forc-
ing frequency, and Reynolds number are investigated.

A. Wave angle effects

The effects of wave angle can be studied locally keep-
ing the magnitude of the wavenumber vector k \ con-
stant. Therefore, three-dimensional Caster's transfor-
mation is used to transform the temporal stability re-
sults to the spatial stability results. Figure 18 illus-
trates the effects of wave angle on shock modes, first
and second modes. The wave angle effect result is
shown at station 21, R = 192.54. The first mode is
initially stable with 0° wave angle. Its amplification
rate —a,- increases with wave angle and peaks out at
around 55° where it already is unstable. The second
mode however, is clearly two-dimensional since the am-
plification rate decreases with wave angle. The change
of the amplification rate for the shock modes are very
small comparing to that for the boundary layer modes.
The wave angle effects for the boundary layer modes
are similar to the well known results of the flat plate
boundary layer modes. An alternative way to study
the effects of wave angle is to follow the wave modes
traveling with different wave angles downstream while
keeping the forcing frequency F constant. The results
for the first modes at F = 531 is shown in Fig. 19.
It is clear that initially three-dimensional waves prop-
agate with higher amplification rates. However, the
amplification rates of waves with large propagating an-
gle quickly start decaying in the streamwise direction,
leaving the least stable mode to be the two-dimensional
modes downstream. The results seem to be incohsis-
tant with the previous observation. The inconsistancy
can be explained by Fig. 20 where the magnitude of
the wavenumber vector | k \ corresponding to the waves
shown in Fig. 19 is shown. The magnitude of the
wavenumber vector | k \ increases in the streamwise di-
rection under current situation which is a more realistic
situation for studying the three-dimensional effects.

B. Wall-cooling effects

It is well known that for compressible flow flat plate
boundary layer, the first modes are stabilized with wall-
cooling while the second modes are distablized with
wall-cooling. For the hypersonic parabolic body case,
in the range of Reynolds number and frequency stud-
ied, the shock modes and the first modes are the more
important modes. Therefore, the effects of wall-cooling
are investigated for those modes. A set of basic flow
solution with higher surface temperature is used for
comparison. Comparison is made at station 12, with
F = 531. Due to the fact that the change of surface
temperature affects other flow parameters, the basic
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flow parameters resulted from different surface temper-
ature, such as .Mach number, streamwise velocity be-
hind the shock, and shock distance are only close but
not identical. Nonetheless, the impact of cooling the
surface can be seen with the comparison. For the low
surface temperature case, the ratio between the sur-
face temperature and the temerature behind the shock
is 0.60. While in the high surface temperature case,
the ratio is 1.18. The temperatures behind the shock
at station 12 differ 1.8% in two cases. The difference in
streamwise velocity at the same location is 0.3%. Fig-
ure 21 shows that dramatically different surface tem-
perature does not alter the wavenumber of the first
modes much. Nonetheless wall-cooling does stablize
the three-dimensional first modes. As for the shock
modes, the cooled wall also stabilizes the shock mode,
but has very little effect on the wavenumber of the
shock mode. This is shown in Fig. 22.

C. Effects of forcing frequency

It is found that shock modes can be unstable be-
fore the first modes get amplified in certain range of
forcing frequency. This phenomenon is studied with
some detail. Figure 23 shows the wavenumber and
the amplification rate of the first modes and the shock
modes at station 9 over a range of frequency normal-
ized by w0 = 6682*17 Hz (F = 2655). The upper figure
shows that the wavenumbers of the first mode and the
shock mode cross at around u>* = 0.32. When the
wavenumbers cross, the amplification rate of the shock
mode change quite rapidly from almost a flat line to
a peak followed by a valley. While almost the exact
reverse happens to the first mode amplification rate.
Similar rapid changes occur at other stations when the
wavenumbers of the first modes and the shock modes
come close. At station 10, as shown in Fig. 24, this
rapid change even brings first modes to be unstable
allowing two unstable modes at w* = 0.29. Unstable
first modes due to this mechanism, however, are only
found at station 10. The first modes become "system-
atically" unstable starting from station 13. This rapid
change in amplification rate associated with the cross-
ing of wavenumbers between the shock modes and the
first modes is not yet well understood at this stage.
Although this phenomenon has not been mentioned in
the flat plate boundary layer linear stability study, it
has been found to exist in the case of compressible vis-
cous Couette flow. Hu et al. ^12' found that in viscous
Couette flow case, at certain Mach numbers, the in-
viscidly stable mode I can be unstable when the its
wavenumber cross with some viscous mode. This cross-
ing of the wavenumbers similarly triggers rapid changes
in the amplification rate of both the mode I and the
viscous mode which is shown in Fig. 25 at Mach 2.7
in the temporal stability context where w,- vs. a plot

is equavalent to —a, vs. ^ plot shown in Fig. 23.
This phenomenon, though yet to be understood, might
have a significant impact on the transition scenario of
the hypersonic parabolic body problem since this may
cause a fundamental resonance to take place early.

D. Stability contours

The effects of Reynolds number and forcing fre-
quency on the stability of the shock modes and the
first modes are illustrated in Fig. 26 with the stability
contours for the shock modes and the first modes drawn
against Reynolds number R and non-dimensional fre-
quency F. The spotty unstable first modes associated
with wavenumber crossing mentioned earlier are not
shown in the contour for clarity. In general, the shock
modes are dominant in the early stage before the first
modes take over. The shock mode instability region has
an upper limit in forcing frequency of approximately
F = 1200, while the first mode unstable region has an
upper limit of approximately F = 680. The critical
Reynolds number for the first modes is considerablely
smaller in the current case than that in the flat plate
boundary layer case due to different basic flow. The
neutral curve of the first modes has two peaks as op-
posed to only one fof'the flat plate boundary layer first
modes. The first modes are generally more unstable
at lower frequency which implys that the effect of the
bow shock close to the body surface is distablizing since
at lower frequency, the disturbance waves travel with
large wavelength and thus are affected more by the
shock layer. The change of amplification rate of the
shock mode with forcing frequency at various stations
provides a clear picture of the cause of the unstable
shock modes. This is shown in Fig. 27. There is one
peak in amplification rate at each station correspond-
ing to one wavenumber crossing mentioned earlier. The
peaks are the source of the unstable shock modes. At
station 11, the peak is not high enough to provide un-
stable modes. Therefore, the shock modes become sta-
ble at around R = 118.14.

Since both the shock modes and the first modes can
be unstable, their categorization is investigated. In the
frequency range studied, both modes are found to be
subsonic modes. The relative Mach number, defined
as:

(21)

where Me stands for the Mach number just behind
the shock, is ploted at station 13 for the first mode
as shown in Fig. 28. Also shown in the figure is the
first mode wave pattern along with the sonic line. Ac-
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cording to the inviscid compressible stability theory,
the inviscid unstable first modes correspond to a gen-
eralized inflection point in the basic flow. When the
basic flow at station 13, where an unstable first mode
is found, is checked, no inflection points are found.

E. Effects of Reynolds number and nose blunt-
ness

To study the effects of Reynolds number and nose
bluntness, a set of basic flow solution with the body
geometry enlarged by 10 times is obtained with DNS.
The reference length scale is increased from / = O.lm
to / = 1m. The grid distribution is kept the same
in the computations allowing station by station com-
parisons of LST results. All other flow conditions are
the same. The result is an increase in Reynolds num-
ber based on S of about VlO times locally. The LST
results at the same grid points at this geometry are
compared with the previous case. The comparisons
are done at F = 531 for the shock modes first. Figures
29 and 30 are the comparisons of the wavenumber and
the amplification rate of the shock modes at the first
11 stations. The high Reynolds number basic flow does
not result in very different wavenumbers for the shock
modes. However, the unstable shock modes observed
in the previous case at the early stations do not exist
for F = 531. The unstable or least stable boundary
layer modes at each station for the higher Reynolds
number case is plotted in Fig. 31 for F = 531. At the
same frequency, the lower Reybolds number case does
not have any unstable boundary layer modes in the
corresponding region. For the higher Reynolds num-
ber case, there are two peaks in the amplification rate
curve. The first unstable peak corresponds to the sec-
ond modes while the second unstable peak corresponds
to the third modes. This is illustrated in Fig. 32 where
eigenfunctions Re{p] and Im{p} of the unstable modes
at station 5 and 6 (first peak) and station 10 (second
peak) are compared. Except for the modification by
the shock layer, the eigenfunctions show that the sec-
ond and third boundary layer modes are the unstable
modes according to Mack's theory '18l

6 Conclusion

Comparisons of the stability results from LST and DNS
are made for the hypersonic parabolic body flow. It is
shown that the LST provides individual wave modes
with close resemblances to the DNS solutions away
from the leading edge. Specifically, these modes include
the shock modes, the boundary layer first modes, sec-

ond and higher modes. It is shown that the eigenfunc-
tions of the shock modes and boundary layer modes
take turn to match with the DNS results. Therefore,
it is confirmed that there do exist shock modes which
can be unstable before the boundary layer modes start
to dominate. The influence of the shock modes die
down downstream. Very close to leading edge, DNS
and LST do not compare well as expected. The effects
of wave angle are studied for the important modes. The
first boundary layer modes are found to be most un-
stable when they are three-dimensional, and the second
modes are two-dimensional. Walling cooling is found
to stabilize the first modes and have very litte effects
on the shock modes. These results match with the
compressible linear stability theory. Lower forcing fre-
quencies are found to cause instability in the flow. At
F = 1200 and below, shock modes are found to be un-
stable initially. This instability is associated with the
cross of wavenumbers of the first modes and the second
modes and is not yet well understood. The first modes
are also found to be unstable in the low frequency range
(F < 700). The critical Reynolds number for the shock
mode instability is around 120. Systematic linear sta-
bility study on higher Reynolds number has not been
carried out. Current results show that higher Reynolds
number leads to unstable second and third modes.
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Table 1: Flow properties by station for hypersonic flow over parabolic body.

Station
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

6
0.1060285E-02
0.1134150E-02
0.1207434E-02
0.1281194E-02
0.1356168E-02
0.1432859E-02
0.1511610E-02
0.1592649E-02
0.1676125E-02
0.1762134E-02
0.1850737E-02
0.1922085E-02
0.1990920E-02
0.2056367E-02
0.2118879E-02
0.2178818E-02
0.2236479E-02
0.2292106E-02
0.2345903E-02
0.2398043E-02
0.2448674E-02
0.2497923E-02
0.2545901E-02
0.2592705E-02
0.2638420E-02
0.2683123E-02
0.2726880E-02
0.2769753E-02
0.2811796E-02
0.2853058E-02

R
34.145498333
41.002348016
48.016105688
55.296790562
62.922465807
70.949308595
79.417556280
88.355371970
97.781544440
107.70747220
118.13867030
126.67682581
135.02017330
143.04116600
150.77592664
158.25403455
165.50010326
172.53489603
179.37613534
186.03910378
192.53709890
198.88178336
205.08345865
211.15128194
217.09343998
222.91729005
228.62947531
234.23602015
239.74240952
245.15365556

Shock Distance
0.17864E-01
0.21903E-01
0.26279E-01
0.31038E-01
0.36229E-01
0.41894E-01
0.48074E-01
0.54806E-01
0.62122E-01
0.70053E-01
0.78626E-01
0.85818E-01
0.92994E-01
0.100026485
0.106929937
0.113716309
0.120395652
0.126976565
0.133466489 -
0.139871914
0.146198544
0.152451433
0.158635081
0.164753519
0.170810379
0.176808946
0.182752205
0.188642877
0.194483456
0.200276231

ue
2900.4881
3066.9497
3195.7327
3299.7828
3386.3814
3459.9652
3523.4246
3578.7519
3627.3883
3670.4195
3708.6905
3735.8289
3759.3836
3779.7092
3797.4740
3813.1678
3827.1596
3839.7324
3851.1081
3861.4630
3870.9390
3879.6524
3887.6987
3895.1580
3902.0972
3908.5733
3914.6350
3920.3239
3925.6763
3930.7235

Table 2: Grid refinement evaluation on LST results. Station 1,R = 34.15.

Basic flow N
121
241

Basic flow N
121
241

Shock mode ar

160.544537666
160.544537639
First mode ar
178.953356383
178.952921072

Relative Error
1.68£-10

Relative Error
2.43£-6

Shock mode a;
0.082557611
0.082557411

First mode a,-
3.989141765
3.989156350

Relative Error
2.42.E - 6

Relative Error
3.665-6
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Figure 1: A schematic of Mach 15 hypersonic flow over
a parabolic leading edge, s is the local surface distance
from the leading edge, and is used for Reynolds number
R.
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Figure 2: Basic flow streamwise velocity (upper), pres-
sure (middle), and p(du/dy) (lower) profiles in the
wall normal direction at various streamwise locations.
p(du/dy) profiles are related to the generalized inflec-
tion points.
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Figure 3: The DNS results of instantaneous contours
instantaneous v'.

Re{ v'} contours at Zone 2

X

Figure 4: The DNS wave patterns visualized witr
Re{i>'} at F — 531 from station 11 to station 29.

Station 14 (Zone 2), F=531

o Homogeneous
- Shock B.C.

50
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Figure 5: The LST eigenvalue spectra at Station 14,
R = 143.04, F = 531 with homogeneous shock condi-
tions and shock jump conditions.

Figure 6: The eigenfunctions of the boundary layer
modes at Station 14, R = 143.04, F = 531 with shock
jump conditions. Left figure, first mode. Middle figure,
second mode. Right figure, third mode.

•» in in ut ui in a

Figure 7: The eigenfunctions of the shock layer modes
at Station 14, R = 143.04, F = 531 with shock jump
conditions. Left figure, shock mode. Middle figure,
second shock layer mode. Right figure, third shock
layer mode.
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LST Shock Mode

LST First Mode

Figure 8: DNS and LST comparison. From left to right, station 1,3,5,7, 9, R from 34.15 to 97.78. Top row, DNS.
Second row, shock modes. Third row, first modes. The firse modes in station 1 and 3 are not shown because they
are very stable comparing to DNS and shock modes.

DNS

LST Shock Mode

LST First Mode

Figure 9: DNS and LST comparison. From left to right, station 11,13,15,17, 19, R from 118.14 to 179.38. Top
row, DNS. Second row, shock modes. Third row, first modes.
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Figure 10: DNS and LST comparison. From left to right, station 21,23,25,27,29, R from 192.54 to 239.74. Top
row, DNS. Second row, shodTmodes. Third row. first modes.
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Figure 11: The magnitude of streamwise velocity dis-
turbance from DNS comparing with the LST first mode
at Station 19. R = 179.38, F = 531.
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Figure 13: The magnitude of streamwise velocity dis-
turbance from DNS comparing with the LST first mode
at Station 21 R = 192.54, F = 531.

Zone 2, Station 19 Zone 2, Station 21

Figure 12: The magnitude of pressure disturbance from
DNS comparing with the LST first mode at Station 19.
R= 179.38, F- 531.

DNS

Figure 14: The magnitude of pressure disturbance from
DNS comparing with the LST shock mode at Station
21 R= 192.54, F = 531.
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Figure 15: Spatial wavenumber comparison between
DNS and LST results. The wavenumber is nondimen-
sionalized by the free stream length scale O.lm. F=531.
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Figure 16: Amplification rate comparison between
DNS and LST results. The wavenumber is nondimen-
sionalized by the free stream length scale O.lm. F=531.
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Figure 17: Amplification rate path of LST modes. The
reference length scale is the local length scale 6. F=531.

Figure 18: Effects of wave angle on spatial modes with
constant |fc|. F=531. At Station 21, R= 192.537.
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Figure 19: Amplification rate path of first mode waves
with different wave angles. F=531. a,- is nondimen-
sionalized by the freestream length scale.
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Figure 20: Magnitude of wavenumber vector of first
mode waves with different wave angles in the stream-
wise direction. F=531. The reference length scale is
the freestream length scale.
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Figure 21: Effects of wall-cooling on 3D first modes.
F=531. Upper figure, effects on wavenumber. Lower
figure, effects on amplification rate. / = O.lm.

Figure 22: Effects of wall-cooling on shock mode along
the streamwise diretion. F=531. Upper figure, effects
on wavenumber. Lower figure, effects on amplification
rate. / = O.lm.
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Figure 23: The behavior of the shock mode and first
mode with different forcing frequency (normalized by
the maximum forcing frequency used in the computa-
tion) at station 9. R = 97.78. Upper figure, ar. Lower
figure, — a*. / = O.lm.

Figure 24: The behavior of the shock mode and first
mode with different forcing frequency (normalized by
the maximum forcing frequency used in the computa-
tion) at station 10. R = 107.70. Upper figure, ar.
Lower figure, —a;. / = O.lm.
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Figure 26: Instability contours at F=531 for the shock
mode and the first mode. The characteristic length
scale is the local 6.
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Figure 25: The behavior of temporal amplification rate
of Couette flow Mode I when its phase velocity cross
with a viscous (lower) mode. Temporal instability.
Re = 106,M = 2.7. Upper figure, crvs.a. Lower fig-
ure, C{vs.a.

Figure 27: The effects of forcing frequency on the shock
mode amplification rate at F=531 at various stations.
The characteristic length scale is the local 6.
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Figure 28: Upper figure, the relative Mach number pro-
file for the first mode. Lower figure, the first mode wave
pattern with the sonic line. Location is station 13 with
R= 135.02, F = 531.

Figure 29: The effects of higher Reynolds number on
the shock mode wave number at F=531 at various sta-
tions. Upper figure, low Reynolds number case. Lower
figure, high Reynolds number case.
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Figure 31: The effects of higher Reynolds number
on the amplification rate of dominant boundary layer
modes at F=531 at various stations. The characteristic
length scale is 1m respectively.
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Figure 30: The effects of higher Reynolds number on
the shock mode amplification rate at F=531 at vari-
ous stations.Upper figure, low Reynolds number case.
Lower figure, high Reynolds number case.

Figure 32: The effects of higher Reynolds number
on the amplification rate of dominant boundary layer
modes at F=531 at various stations. From left to the
right, station 5, station 6 and station 10. The charac-
teristic length scale is 1m respectively.
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