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Abstract

This paper presents and evaluates a semi-implicit
method for efficient and high-order accurate compu-
tations for the stability and transition of hypersonic
boundary layers. For this problem, if explicit schemes
are used to advance the equations in time, the small
grid sizes in wall-normal direction in the boundary lay-
ers imposed severe restriction on time steps. But global
implicit methods are seldom used because they will take
a prohibitively large amount of CPU time and large
memory to convert full implicit equations. In the cur-
rent method, the spatial discretization of the governing
equations is separated into stiff terms involving deriva-
tives along the wall-normal direction and nonstiff terms
of the rest. The split equations are then advanced in
time using second or third-order semi-implicit schemes
so that implicit methods are used to treat the stiff terms
while more efficient explicit methods can still be used
for the nonstiff terms. The strict limitation on time
steps due to fine grids in the wall-normal direction is
removed by semi-implicit method so that the time steps
only depend on the grid spacing in the streamwise di-
rection and accuracy requirement: The efficiency and
accuracy of the new semi-implicit algorithm have been
tested in computing the unsteady Navier-Stokes equa-
tions for several cases.

Introduction

The prediction of laminar-turbulent transition of hy-
personic boundary layers is critical to the accurate cal-
culations of drag and thermal loads for the aerodynamic
design and control of hypersonic space vehicles M. In
recent years, direct numerical simulation has become a
powerful tool in the study of fundamental flow physics
of the stability and transition of boundary layers. The
DNS of compressible boundary layer transition has been
carried out by several research groups f2"12'. These stud-
ies show that the DNS of high-speed boundary layer
transition is feasible on existing computers using effi-
cient and accurate numerical methods. All these sim-
ulations are explicit methods, assuming a simple flat
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surface without the presence of shock waves. Explicit
high-order finite-difference methods are used in the non-
periodic streamwise and wall-normal directions, and the
Fourier spectral collocation methods are used in the
periodic spanwise direction'9'12'13^. But it is difficult
to apply existing numerical methods for compressible
boundary layer DNS to hypersonic boundary layers over
blunt bodies, due to the lack of efficient semi-implicit
numerical methods for compressible viscous flows *-14',
difficulty in computing transient hypersonic flow with
shock waves, and the stiffness of the equations in react-
ing hypersonic flows.

The difficulty in using explicit methods for DNS of
hypersonic flow is that the Navier-Stokes equations are
stiff for explicit numerical schemes. For unsteady vis-
cous flow calculations, ihe extremely small grid sizes in
the boundary layers near the wall is used. The stiff-
ness of the governing equations refers to the fact that
the time steps required by the stability requirement in
the calculations are much smaller than that needed by
accuracy consideration so that it is difficult to perform
the simulation in reasonable computation times. This
requires implicit treatment in numerical computations.
But it is computationally expensive to do full implicit
iterative calculations at every time step of the tran-
sient flow computations. In addition, because of the
accuracy requirement in computing the development of
transient instability waves in the streamwise direction,
the computations in the streamwise direction are ex-
plicit. Therefore, a compromise between computational
efficiency and numerical accuracy for the DNS studies
is the semi-implicit methods, where only the derivatives
in the wall-normal direction are treated implicitly.

[15,16] have started the work on developing a new
set of semi-implicit Runge-Kutta schemes of for the ro-
bust and accurate temporal discretization of stiff equa-
tions for the DNS of hypersonic flows. Three kinds of
time-stepping semi-implicit Runge-Kutta schemes were
derived by treating nonstifF terms in the equations ex-
plicitly and simultaneously treating the stiff terms im-
plicitly. These new algorithms has been tested to be
more accurate than conventional implicit methods while
maintaining the robustness of the calculations in [17].

In this paper, we present an efficient semi-implicit
high-order finite difference algorithm and computation
codes for the DNS of 3-D transient hypersonic sta-
bility and transition over blunt body. The govern-
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ing equations are the 3-D compressible Navier-Stokes
equations. The equations are discretized in space us-
ing the fifth-order upwind schemes which can be re-
placed by other high-order schemes if necessary. A
high-order shock fitting numerical scheme developed
in [18] is also used to treat the presence of shock waves.
The spatial discretization terms of the governing equa-
tions are separated into stiff terms, involving deriva-
tives along the wall-normal direction only, and nonstiff
terms for the rest of the equations. The split equations
are advanced in time using the semi-implicit temporal
schemes, which lead to efficient computations of block
seven-diagonal systems of implicit equations. The semi-
implicit method is used to remove the stiffness caused
by the small grid sizes along the wall-normal direction
in the boundary layers. The restriction on the time step
is only limited by the streamwise grid sizes and accuracy
conditions.

Governing Equations

Although real gas effects become important as gas
temperature increases for hypersonic flow behind a
strong bow shock, perfect gas assumption is used in
this paper. The method can be extended to nonequilib-
rium real-gas flow if necessary. The governing equations
are the unsteady three-dimensional Navier-Stokes equa-
tions

formation relations for the current grid systems are

where
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dt dxj dxj
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The general curvilinear three-dimensional coordi-
nates (£, i], C, T) are used along the body fitted grid
lines (Fig. 1). Shock fitting methods are used to treat
the bow shock as a computational boundary. The trans-

77 = r } ( x , y , z , t )
(9)

T = t= T

where & = 0 and £t = 0 because the £ and C grid lines
are fixed when the shock boundary moves.

In the numerical simulations, the governing equations
(1) are transformed into the computational domain (£,
ij, C, T) as follows
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where J is the Jacobian of the coordinate transforma-
tion, and £r, £y, 6, »?x, r)y, rjz, r,t, Cr, Cy, and & are
the grid transformation matrices. In the equations, the
transformed inviscid fluxes E', F', and G'- are standard
flux terms with known eigenvalues and eigenvectors.
The transport flux terms E'v, F^, and G'v contain both
first-order and second-order spatial derivatives of veloc-
ity and temperature. These derivatives in the Cartesian
coordinates (x,y, z) are transformed into the computa-
tional coordinates (f, 77, C) using a chain rule for spatial
discretization.

Numerical Method

In the current semi-implicit methods, the spatial dis-
cretization of the Navier-Storkes equations is additively
split into the stiff terms involving spatial derivatives
normal to the wall and the rest of the flux terms, which
lead to a system of ordinary differential equations in the
form of

(17)

where u is the vector of discretized variables
{Uij}i=i,_...iL\j=i.....jL in the flow field, f ( < , u ) repre-
sents the nonstiff term, and g(?.u) represents the stiff
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term. The split ordinary differential equation (17)
is then integrated in time using semi-implicit Runge-
Kutta schemes derived by Zhong et al. '15' ^19' or second-
order AB-CN semi-implicit method, where f is treated
explicitly and g is treated implicitly. The resulting
semi-implicit methods for time-accurate computations
of the Navier-Stokes quations are high-order accurate in
both space and time, and they are much more efficient
than the spatially full implicit schemes. The details of
the method are presented in the following sections.

Spatial Discretization and Splitting

Though the high-order semi-implicit method is devel-
oped for DNS of 3-D boundary layers, only 2-D formu-
las are presented here. The extension to 3-D case is
straightforward.

Equation (10) is additively split into relatively nons-
tiff part f (U,-j) and stiff part g(U,-j) as follows

(18)J dt
where J is Jacobian of the coordinate transformation
and

.<••>

where F'v2 is the part of the viscous flux terms only
involving normal derivatives, and F'vi is the part of
the viscous flux terms except F1

 v2, i.e.,

5F'e aF'vi , dF',,,__
dr, dr, dr, (21)

Generally, in Eq. (18), g(U,-j) is much stiffer than
f (U,-j) because very small grid space is used in the wall-
normal direction compared to that used in streamwise
direction.

From Eq. (13)

dF'v
Or,
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For the inviscid flux vectors in the Eqs. (19) and (20),
the flux Jacobians contain both positive and negative
eigenvalues in general. A simple local Lax-Friedrichs
scheme is used to split the inviscid flux vectors into
positive and negative wave fields. For example, the flux
term F' in Eq. (20) can be split into two 'terms of pure
positive and negative eigenvalues as follows

where

F' = F' + F'_ (23)

(24)

(25)

where A is chosen to be larger than the local maximum
eigenvalues of F'

A =
|V7?|

(V/(€C)2 + U'2+

where

r,2w

(26)

(27)

The parameter e is a small positive constant added for
the smoothness of the splitting. The fluxes F'+ and F'_
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contain only positive and negative eigenvalues respec-
tively. Therefore, in the spatial discretization of Eq.
(21), the flux derivatives are split into two terms

dF1 dF( dF'_ (28)

where the first term on the right hand side is discretized
by an upwind high-order finite-difference method and
the second term is discretized by a downwind high-order
finite-difference method. Meanwhile, high order central
difference schemes are used for the viscous flux terms.

The fifth-order upwind explicit schemes is

1 3

= hT £ a'+* «'+*h 6,
/t=-3

a
(29)

where

ai±2 = T$ ~ 2
a

a,-±i =' ±45+fa
a,- = 0 - fa 6,- = 60

This scheme is fifth-order upwind scheme when a <
0, and it is sixth-order central scheme when a = 0.
Corresponding sixth-order central explicit inner scheme
for the second order derivatives is

«!' = 1 17 <-i - 245u«
17

- Wt+2 (30)

Semi-Implicit Schemes

Equation (17) can be integrated in time using high-
order semi-implicit temporal schemes, where f is treated
explicitly and g is treated implicitly. Three kinds of
high-order semi-implicit Runge-Kutta schemes for high-
order temporal integration of the governing equations
for reacting flow simulations has been derived in [20,
21]. For example, 3rd order Rosenbrock Additive Semi-
Implicit Runge-Kutta (ASIRK-3C) Method is:

[I - ha, J(u»)] k! = h{{ (u») + g(u")}

- /ia3J(un

h{t (u" + 621k!)+
g(u" + c21ki)}

+ c3iki + c32k2)] k3 =
h{f (un + 63iki + 632k2)+
g(un+C3lk1-(-C32k2)}

(31)

where

ai = .797097
c2i = 1.05893

a2 = .591381
C31 = |

°32 - 36
a3 = .134705
c32 = -.375939

where ai, a2, a3, c2i, and c32 are irrational numbers
with six significant digits. The parameters of the semi-
implicit Runge-Kutta methods are chosen based on
both stability and accuracy requirements with the si-
multaneous coupling between the explicit and implicit
terms. Corresponding high-order low-storage semi-
implicit Runge-Kutta method versions and coefficients
(LSSIRK-2C, LSSIRK-3C) can be found in [19].

Second-order AB-CN method, which uses a combined
Crank-Nicolson method and Adams-Bashford method,
can be written as

_ u» + 2 [3f(u»)_f („»

Jacobians for Semi-implicit Schemes

(32)

In order to apply the semi-implicit schemes to the
Eq.(18), Jacobian matrices J(u) = dg/du are needed in
the Eqs. (31) and (32). .In order to maintain high-order
temporal accuracy, the derivative of the viscosity coeffi-
cient with respect to temperature needs to be included
in the Jacobian. The components of the Jacobian J(u)
are derived as follows

where D/Drj is the fifth-order finite difference approxi-
mation of the derivatives only in wall-normal direction,
and F'+, F'_ are inviscid fluxes from Eq. (-28).

a. Inviscid Flux Jacobian

The Jacobian for inviscid flux is

8F'±(U)n =

where

(34)

(35)dU dU

b. Viscous Flux Jacobian

The Jacobian for viscous flux in the implicit part is

(36)
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where

ef = CVT

Coefficients in the matrices of Av, Bv and Cv can
be found in appendix.

c. Implicit Jacobian Matrix

The Jacobian matrix for the implicit parts can be ob-
tained from Eqs. (35) and (36) after applying the same
fifth-order upwind scheme and central scheme described
in Eqs. (29) and (30).

Sg(Uij) =
ijSUij + EijSUij+i + FfjSUij+2

(41)

where

,'ffil

ij-3

ij-3

$)
(S£\

fdFL\9u ; i j_2fav
•J-2

dj =

Dtj =

dU

•j-i

du
+ a4-

dU

dv

3

where a/1, a/2 , &j3, a/3 (/ = 1 , . . . ,7) are the coefficients
of high-order schemes. The upperscript 1, 2, 3 represent
the upwind, downwind and central scheme respectively.

The final global Jacobian matrix for the implicit
terms in the semi-implicit Runge-Kutta schemes is a
block seven-diagonal matrix involving terms along the
j grid direction only. The block seven-diagonal system
of equations can be solved efficiently by a banded ma-
trix solver.

Numerical Results

Numerical codes have been written by using high-
order semi-implicit schemes with a high-order shock fit-
ting algorithm. The spatial discretization is using fifth-
order upwind scheme which can be replaced by other
high-order schemes easily if necessary. The shock fit-
ting procedure is turned off if there is no shock in the
flow field.

1. Stiffness Analysis of a Linearized Model Equation

A two-dimensional linearized model convection-
diffusion equation bounded by two parallel walls is

-^ (42)3x2 3x5y

where R is the "Reynolds number". The boundary con-
ditions are u(x, 0) = u(x, 1) = 0. When R is large, there
is a thin viscous boundary layer on the wall with large
gradients in y direction. This equation is used to do
stiff analysis on the stiff terms and nonstiff terms of the
model equation.

Similar to semi-implicit method of Navier-Stokes
equations presented in previous section, the finite dif-
ference discretization of the spatial derivatives leads to
a system of semi-discrete ordinary different equations,
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i.e.

where

dt
(43)

(44)

where explicit third-order upwind approximation is used
for ux, uy and fourth-order central difference approxi-
mation is used for other terms. We can get

= [A]U+[B]U (46)

where U is a big matrix which includes all points in the
computational domain, [A] is the big coefficient matrix
of nonstiff term f(utj), and [B] is the big coefficient ma-
trix of stiff term g(u,-j). By analysising the eigenvalue
A/ of [A] and the the eigenvalue \g of [B], we can get
the information about the stiffness of g(u.j). The larger
the ratio of j-j-jfp^j, the stiffer the g(u,j).

A periodic boundary condition is used in the x direc-
tion. "A three-point extrapolation is used at the walls to
calculate « located at one grid-point outside of the walls.
Although stretched grids are often used in practice, sim-
ple uniform grids are used here. The conditions for the
calculation are: R = 10 ~ 40, flAy = 0.25 ~ 1.0,
Ax = 20. The computation uses a set of 11 x 11 grids.

Figure 2 shows the changing of the ratio of ^°JA
?

along with Reynolds number changing. From the figure,
the g(«ij) term is much stiffer than the f («,-_,-) term due
to the big value of ™°*|*'| , and the larger the R, the
stiffer the g(«<j). When R is fixed, the smaller the At/,
the stiffer the the g(u.j). Semi-implicit methods can
be applied when the stiff term is much stiffer than the
nonstiff term.

2. Supersonic Couette Flow Stability (2-D)

Compressible Couette flow is a wall-bounded parallel
shear flow which is a simple example of hypersonic shear
flows. Because the mean flow is a parallel flow, the
linear stability analysis based on the full Navier-Stokes
equations does not involve the parallel approximation
of a developing boundary layer. The LST results for
compressible Couette flow are taken from [22]. Both
steady and unsteady two-dimensional computations are
tested.

Steady Flow Solutions

We first used the high-order semi-implicit Navier-
Stokes codes to compute the steady solutions of the su-
personic Couette flow. The results are compared with

Table 1: Numerical errors for computations of super-
sonic Couette flow using 5th-order semi-implicit scheme,
(ei = ||e||i and e2 = ||e||2)

Grids
51
101

ei x 10-"
6.9913
0.2315

ratio

30.2

e2 x ID-6

1.4114
0.034

ratio

41.5

"exact" solutions obtained by a shooting method with
several order of magnitudes smaller errors. Several test
cases with different Mach number, Reynolds number
and wall temperature have been tested. The results
shown in this paper are those for the following flow con-
ditions: MOO = 2, the upper wall is an isothermal wall
with T^ = 220.66667/C while the lower wall is an adia-
batic wall. The gas is assumed perfect gas with 7 = 1.4
and Pr = 0.72. The viscosity coefficient is calculated
by the Sutherland's law

n = \T+C (47)

where C is taken to be 0.5.
Figure 3 shows the steady velocity and temperature

profile obtained by using a semi-implicit fifth-order up-
wind scheme with 101 uniform grid points. The numer-
ical results agree well with the exact solutions.

The numerical simulations are conducted using sev-
eral sets of uniform grids in order to evaluate the accu-
racy of the algorithm. The quantitative numerical .er-
rors of the simulations using two kinds of uniform grids
are listed in Table 1. The table shows that the numer-
ical errors for this fifth-order semi-implicit scheme in
spatial discretization are of the order of 10~6 using 51
grid points and 2.315x 10~7 using 101 grid points.

The theoretical ratio of the errors between the coarse
grids and the fine grids are 32 for a fifth-order scheme.
The results in the table show that the numerical algo-
rithms are able to maintain such high orders of accuracy.

Unsteady Flow Solutions

We conduct numerical simulations for the temporal
stability of the compressible Couette flow by simulating
the development of given initial disturbances in the 2-
D flow field ( shown in Fig. 4). The initial conditions
are the steady flow solutions plus disturbances given
by a set of eigenfunctions obtained by linear stability
analysis. For small initial disturbances, the growth or
decay of the disturbances is given by the eigenvalue of
the eigen-mode. The unsteady flow field is solved by
computing the unsteady Navier-Stokes equations using
different kinds of semi-implicit temporal discretizations.
The same stretched grids are used in y direction as those
used in the LST calculation. The computational do-
main in the simulation is one period in length in the x

6
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direction and periodic boundary conditions are used.

a. Stable Mode Disturbance Waves

The flow conditions of the first case are: MOO = 2
and Reoa = 1000. For this case, the initial disturbance
wave has a dimensionless wave number of a = 3, and the
eigenvalue obtained from the temporal linear stability
analysis is

u = (jjr + u>ii
= 5.52034015848-0.132786378788J (48)

where a negative w< means that the disturbances will
decay in time with a dimensionless frequency of ur.

We have applied full explicit 5th-order numerical
method and three kinds of semi-implicit temporal dis-
cretizations, ASIRK-1C, LSSIRK-2C and LSSIRK-3C
to this problem. Figure 5 shows the accuracy com-
parison among these numerical methods after running
codes to the end of about two wave periods. Because
full explicit method uses very small At in every time
step, it can arrive high accuracy although we use 1st-
order temporal- discretization. Semi-implicit methods
use larger A< every time step. They lose some accuracy
if Ist-order temporal discretization is still used. This
need high-order treatment in temporal discretization.
As shown in the figure, there are small differences of
relative errors between the LSSIRK-2C and LSSIRK-
3C methods whose relative errors are close to those of
full explicit method. At this time, the numerical errors
mainly come from the spatial discretization.

We run these codes to the end of two wave periods and
record the real CPU time consuming of these numerical
methods. Table 2 shows the comparison among these
methods. The computational efficiency is improved by
using semi-implicit methods compared with full explicit
method. LSSIRK-2C and LSSIRK-3C method increase
the CPU time consuming since they need more time to
solve the big banded matrices, however, as shown above,
they improve the accuracy of the numerical results.

Figure 6 and Figure 7 show the comparison of the
DNS results using LSSIRK-2C method and the LST
prediction for the time history of velocity perturbations,
pressure and temperature perturbations respectively at
a fixed point in the 2-D supersonic Couette flow field.
The computation uses 52x 101 stretching grids. The dis-
turbance wave decayed along with time growing. Figure
8 show the distribution of instantaneous flow perturba-
tions in the y direction at the end of about six wave
periods. These figures show that the instantaneous per-
turbations of all flow variables for the 2-D numerical
simulations by using semi-implicit method agree well
with the LST results.

For sufficiently low amplitude waves, integration of
the perturbation kinetic energy of the solutions ought
to exhibit the exponential behavior:

where EQ is the perturbation energy at t = 0. Fig-
ure 9 display the time dependence of the logarithm of
the computed perturbation energy divided by the ini-
tial perturbation energy in one wave period. Again the
results agree well between the DNS results and the LST
results.

b. Unstable Mode Disturbance Waves

The unstable mode in high Mach number and high
Reynolds number supersonic Couette flow field can be
obtained by using LST analysis ̂  chosing the flow
conditions of M^ = 5, Reoo = 1.5 x 105, dimen-
sionless wave number a = 3.2, and the eigenvalue
w = wr + uii = 0.27739555 + 0.00100708J. In here,
a positive w,- means that the disturbances will increase
in time with a dimensionless frequency of ur . Figure
10 shows a set of eigenfunctions of this eigenvalue ob-
tained by linear stability analysis and Fig. 11 shows the
contours of wave patterns of Re(p ).

The computation uses 52 x 151 stretching grids. Fig-
ure 12 and Figure 13 show the comparison between the
DNS results using LSSIRK-2C method and the LST
prediction for the time history of velocity perturbations,
pressure and temperature perturbations at a fixed point
in the flow field respectively. The disturbance waves
are amplified along with time growing. For this higher
Mach number and higher Reynolds number supersonic
Couette flow stability problem, the DNS results agree
well with the LST results.

3. Supersonic Boundary Layer Stability (2-D)

The fifth-order semi-implicit codes for 2-D unsteady
Navier-Stokes equations are also applied to simulate
the temporal stability of supersonic flat plate bound-
ary layer. From the experience of simulating supersonic
Couette stability, LSSIRK-2C semi-implicit method is
used for current case. The initial conditions are the
steady flow solutions plus disturbances given by a set of
eigenfunctions obtained by linear stability analysis.

The computation uses 42 x 141 stretching grids. Fig-
ure 14 and Figure 15 display the mean flow of numerical
results compared with the "exact" solutions obtained
by a shooting method with several order of magnitudes
smaller errors. The numerical results agree well with
the exact solutions.

To obtain the unstable second mode disturbance, the
flow conditions are chosen as followings: M^ = 4.5,
Reynolds number R = 1000 (based on the boundary-
layer length scale) , initial disturbance wave number a =
0.22 according to [23], and the eigenvalue obtained from
the temporal linear stability analysis is

E ( t ) = Eoe2^ (49)

W = Ulr

= 25.77363556598 + 0.2497128329918i (50)

Figure 16 shows a set of eigenfunctions of this eigen-
value obtained by linear stability analysis and Fig. 17
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shows the contours of wave patterns of Re(p ). form
Figure 18 shows the comparison of the DNS results

and the LST prediction for the time history of velocity
perturbations at a fixed point in the 2-D supersonic flat
plate boundary layer field. Again, the disturbance wave
was amplified in time. Figure 19 shows the distribution
of instantaneous flow perturbations in the y direction
at the end of about three periods in time. The results
agree well between the DNS results and the LST results.

Table 3 shows the comparision of records of real CPU
time consuming between the semi-implicit method and
the full explicit method after running the codes to the
end of two time wave periods. The computational effi-
ciency can be improved by using semi-implicit method
compared with the full explicit method.

4. Receptivity of A Hypersonic Boundary Layer

The last test case considered for validating is the
numerical simulation of the receptivity of a two-
dimensional boundary layer to weak freestream acoustic
disturbance waves for hypersonic flow past a parabolic
leading edge at zero angle of attack. In this spatial
test case, we use the same the flow conditions and same
boundary conditions as those in [24]. The purpose of
the test case is to evaluate the numerical efficiency and
accuracy of such simulations of the steady and unsteady
cases using the new high-order semi-implicit method
with a set of 160 x 120 grids.

The specific flow conditions are

Moo = 15 € = 5 X 10~4

T^ = 192.989 K p^ = 10.3 Pa
T* = 1QQ()K 7 = 1.4
R' = 286.94 Nm/kgK Pr = 0.72
b* = 40m-1 d* = 0.1m
T? = 2S8K 77 = 110.33 K
Hf = 0.17894 x IQ-^kg/ms
Nose Radius of Curvature = r* = 0.0125 m
faoo = PloU^d'/nZo = 6026.55

The body surface is a parabola given by

x*=b*y'*-d* (51)

where 6* a given constant and d* is taken as the ref-
erence length. The body surface is assumed to be a
non-slip wall with an isothermal wall temperature T^.

In the simulation, the freestream disturbances are su-
perimposed on the steady mean flow to investigate the
development of T-S waves in the boundary layer with
the effects of the bow shock interaction. The freestream
disturbances are assumed to be weak monochromatic
planar acoustic waves with wave front normal to the
center line of the body. The perturbations of flow vari-
able introduced by the freestream acoustic wave before
reaching the bow shock can be writ ten in the following

Kl
Ip'l
\P'\

where |u'|, |u'|, |p'|, and \p'\ are perturbation amplitudes
satisfying the following relations

« o o = C ,
IP' I oo = C, \p\oo =

where f is a small number representing the freestream
wave magnitude. The parameter k is the dimensionless
freestream wave number which is related to the dimen-
sionless circular frequency u by

u = k(l + M-1) (53)

The corresponding dimensionless frequency F is defined
as

F = (54)

Steady Flow Solutions

The steady flow solutions of the Navier-Stokes equa-
tions for the viscous hypersonic flow over the parabola
are obtained by using second order AB-CN semi-
implicit temporal discretization along with fifth order
spatial discretization and advance the solutions to a
steady state without freestream perturbations. Figure
20 shows steady flow solutions for a set of 160 x 120
computational grids, pressure contours, and tempera-
ture contours.

The numerical accuracy of the semi-implicit method
is evaluated by comparing the solutions with those of
full explicit method. Figures 21 compare the pressure
profile behind the bow shock shape and the pressure on
the body surface between these two numerical methods.
Figure 22 shows the comparison for Mach number along
the stagnation line. All these steady solutions show
that the results of semi-implicit method agree with the
results of full explicit method well. Accurate steady
solutions can be obtained by running high-order semi-
implicit method.

Unsteady Flow Solutions

In this section, the generation of boundary-layer T-
S and inviscid instability waves by freestream acous-
tic disturbances is considered for hypersonic flow over
a parabolic leading edge with freestream disturbance
wave numbers k = 15. The corresponding dimension-
less frequency F x 10~6 is 2655. Efficiency and accuracy
of the new semi-implicit method code are studied again
for this unsteady receptivity problem.

Figure 23 shows the contours for the instantaneous
perturbation u' of the velocity in x direction after the
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flow field reaching a periodic state, the Fourier ampli-
tude | u' | and the phase angle yv (in degrees). The
numerical solutions are obtained by using high-order
semi-implicit method with a set of 160 x 120 grids. The
unsteady computations are run for more than 29 peri-
ods in time to ensure that periodic solutions have been
reached for the entire flow field. The instantaneous con-
tours of u1 show the development of instability waves in
the boundary layer on the surface. The first region of
x < 0.2 dominated by the first mode instability and
the second region of x > 0.2 dominated by the sec-
ond mode instability were numerically obtained by us-
ing semi-implicit method. These regions have been dis-
cussed in [24] by using high-order full explicit method.
From the contours of the Fourier amplitudes and phase
angles for u' in Fig. 23, the characteristics of the switch-
ing of instability modes from region 1 to region 2, the
decay of first mode and the growth of the second mode
with the sudden phase angle change near the body sur-
face around x — 0.2 are also captured by using the new
semi-implicit method.

Figures 24 and 25 compare the distribution of instan-
taneous entropy perturbations along the parabola sur-
face and behind the bow shock surface respectively. The
results agree well between the semi-implicit method and
full explicit method. Meanwhile, the comparison of the
distribution of the Fourier amplitudes and phase an-
gles of the instantaneous entropy perturbations along
the parabola surface are shown in Fig. 26 and Fig. 27
respectively. High-order semi-implicit method can ar-
rive the same accuracy as the full explicit method if we
apply high-order semi-implicit temporal discretization.

Table 4 shows the real CPU time consuming compar-
ison between the full explicit method and the second or-
der AB-CN semi-implicit method. The real CPU time is
recorded by running the code for about 10 wave periods.
The magnitude of the maximum time step used in nu-
merical calculation is limited by the stability condition
related to the grid size in the streamwise direction. The
stiffness of fine grids in the direction across the bound-
ary layers is overcome by the semi-implicit method. The
computation results show the new schemes improved
the computational efficiency nearly one order of magni-
tude compared with the full explicit methods.

Again, these results show that the current unsteady
simulations with high-order semi-implicit method are
highly accurate and highly efficient for hypersonic
boundary layer DNS studies.

Summary

An efficient high-order semi-implicit Runge-Kutta
method has been presented for computing the stability
and transition of hypersonic boundary layers using the
unsteady Navier-Stokes equations. The method uses
semi-implicit treatment to overcome the stiffness of vis-
cous wall-normal derivative terms, while the streamwise

terms are computed by explicit methods for efficient un-
steady flow calculations. The efficiency and accuracy of
the method has been tested in several cases. The results
show that by using the semi-implicit method, the com-
putational efficiency can be improved nearly one order
of magnitude while maintaining the same accuracy as
full explicit method. The CFL numbers in the semi-
implicit computations are only limited by streamwise
grid space and the accuracy requirement for unsteady
flow computations.
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Appendix

In this section, coefficients of viscous flux Jacobian
for semi-implicit schemes are presented.

a22 = T'/r'te +

2

«33 = %fyc + o3
a42 = u (a22u + a23^)

043 = U (a23« + «
_ 2 , „ 2

du dp

du

dv dfi

dv du

du dp

(a 9U dv\\a22dr) a23dr)J
dv\ dk
— +2a44^-drjj drj

du ( du+ Vdr(a23dj

( du du\ ( dv du
043 = a23\2u-jr- + u-£-]+aaal2u— + v—

C24 =

C34 =

C42 =

^43 =

d2u

du
%

d2v dp

023-3-drj
dv

— ( —\ d_( dv
^23"^ I P- £. I i ^337^Oi] \ Or) J dr]
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du d ( du\ du d
C44 = a22dTdj(Udj)+a33dTd;{V~

du dv d2Tdk
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Table 2: Efficiency comparison between full explicit
method and semi-implicit method for the simulations
of temporal stability of supersonic Couette flow.

CFL number
A*
Ay

timesteps
time(sec)xlO~2

Record
Full Explicit
ASIRK-1C
LSSIRK-2C
LSSIRK-3C

Full Explicit Semi-Implicit
0.0043 0.33
202.95 202.95

226,116 3,000
0.422837 0.422837

of CPU time(sec) consuming.
60,456.63

3,518.96
7, 144.83
11,541.26

Ratio
0.013

75.372

17.1802
8.4616
5.2383

Table 3: Efficiency comparison between full explicit
method and semi-implicit method for the simulations
of temporal stability of supersonic flat plate boundary
layer (Time: 2nd order, Space: 5th order).

CFL number
Ar
Ay

timesteps
time(sec)xlO~2

CPU time(sec)

Full Explicit
0.00284
169.2857
126,702
0.1074

39,809.77

LSSIRK-2C
0.18

169.2857
2,000
0.1074

6, 184.35

Ratio

63.351

6.437

Table 4: Efficiency comparison between full explicit
method and semi-implicit method for the simulations
of the receptivity of hypersonic boundary layers over
blunt body (Time: 2nd order, Space: 5th order).

CFL number
Grids

AT
Ay

timesteps
time(sec)xlO~3

CPU time(sec)

Full Explicit
0.0047

160 x 120
245.82

446,811
1.0091

213,037.47

AB-CN
0.14

160 x 120
245.82
15, 000
1.0091

24,437.55

Ratio
0.0336

—
-

29.787
-

8.718
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Freastream Waves

bow shock

Figure 1: A schematic of 3-D shock fitted grids for
the direct numerical simulation of hypersonic boundary-
layer receptivity to freestream disturbances over a blunt
leading edge.

8.0000E4
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max IX, I

RAy-0.25
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0.75
1.0

Figure 3: Variation of steady base flow temperature and
velocity profiles for adiabatic lower wall with MOO = 2.0.
The numerical solution is obtained using a fifth-order
semi-implicit scheme.

U

Disturbance

Figure 4: A schematic of stability of two dimensional
supersonic Couette flow.

____ full npliat method
———— ASDUC-1C
- - - - - LSSIRK-2C

LSSDUC-3C

Figure 2: Variation of eigenvalue ratio of maximum
eigenvalue of stiff term and maximum eigenvalue of non- ,.,. ,. D , .. . t \\ \- •<.°a ^ _ r i ._ ._ _ , _ _, , _ A . _ _ Figure 5: Relative error comparison among full explicit

method ASIRK 1CT LSSIRK-2C and LSSIRK-3C for
unsteady Couette flow case with LST results.

stiff term of linearized model equation.
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Figure 6:, Time history of velocity perturbations at a
fixed point in the 2-D supersonic Couette flow field
(LST: SuQ and 6vQ, DNS: Su and Sv). Ma = 2.0,
Re = 1,000.

Figure 9: Computed perturbation energy for a 5th-
order semi-implicit method. The dot line is the LST
result.
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Figure 7: Time history of pressure and temperature
perturbations at a fixed point in the 2-D supersonic
Couette flow field (LST: 6p0 and ST0, DNS: Sp and ST).
Ma =2.0, Re = 1,000.

Figure 10: A set of eigenfunctions obtained from linear
stability analysis for supersonic Couette' flow. Ma =
5.0, Re = 150,000, u = 0.277395557 + 0.00100708i.

Figure 8: Distribution of instantaneous flow perturba- / __
tions in v direction. (LST: Su0, Sv0. 6Po and ST0 DNS: FlgUre 11: Wave patterns of Re& ) from LST at M° :

Su. Sr S'p and ST) 5.0. fle = 150. 000. *• = 0.27739555717+0.00100708z.
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Figure 14: Variation of steady flat plate boundary layer
flow velocity profile with MOO = 4.5, R = 1,000. The
numerical solution is obtained using a fifth-order semi-
implicit scheme.

20

Figure 12: Time history of velocity perturbations at
a fixed point in the 2-D supersonic Couette flow field
(LST: Su0 and Sv0, DNS: Su and Sv). Ma = 5.0, Re =
150,000.
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Figure 15: Variation of steady flat plate boundary layer
flow temperature profile with MOO = 4.5., R = 1,000.
The numerical solution is obtained using a fifth-order
semi-implicit scheme.

——— Re<T)
lnXT)

Figure 13: Time history of pressure and temperature
perturbations at a fixed point in the 2-D supersonic
Couette flow field (LST: Sp0 and ST0, DNS: 6p and ST).
Ma =5.0. Re = 150,000.

Figure 16: A set of eigenfunctions of unstable second
mode obtained from linear stability analysis for super-
sonic flat plate boundary layer. Mx = 4.5, R = 1,000,
Q = 0.22, u - 25.77363556598 + 0.2497128329918*.
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Figure 17: Wave patterns of Re(p ) from LST at Mx -
4.5, R = 1,000, a = 0.22, u = 25.77363556598 +
0.2497128329918*.
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Figure 18: Time history of velocity perturbations at a
fixed point in the 2-D supersonic flat plate boundary
layer flow field (LST: Su0 and Sv0, DNS: Su and Sv).
Moo =4.5, R = 1,000, a = 0.22.
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Figure 19: Distribution of instantaneous flow perturba-
tions in y direction. (LST: 8u0, Sv0, Sp0 and ST0 DNS:
Su, Sr, 5p and ST).

Figure 20: Steady flow solutions by using semi-implicit
method for computational grids (upper figure) where
the bow shock shape is obtained as the freestream grid
line, pressure contours (middle figure), and Tempera-
ture contours (lower figure).
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Figure 21: Comparison of steady solution of the pres-
sure profile along the body surface and behind the bow
shock shape between full explicit method and semi-
implicit method.
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Figure 22: Comparison of steady solution of the Mach
number along the stagnation line between full explicit
method and semi-implicit method.

Figure 23: Unsteady horizontal velocity perturbation
contours for the case of k = 15: instantaneous u' (upper
figure), Fourier amplitude | u' \ (middle figure), and
Fourier phase angle (pu> (in degrees) of u' (lower figure).
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Figure 24: Comparison of distribution of instanta-
neous entropy perturbations along the parabola sur-
face between the full explicit method and semi-implicit
method.

Figure 26: Comparison of distribution of the Fourier
amplitudes of the entropy perturbations along the
parabola surface between the full explicit method and
semi-implicit method.
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Figure 25: Comparison of distribution of instantaneous
entropy perturbations behind the bow shock between
the full explicit method and semi-implicit method.
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Figure 27: Comparison of distribution of Fourier phase
angles (in degrees) of the entropy perturbations along
the parabola surface between the full explicit method
and semi-implicit method.
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