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Abstract

Direct numerical simulation (DNS) of the stability
and transition of hypersonic boundary layers over blunt
leading edges requires high-order accurate numerical
methods to resolve a wide range of time and length
scales. In addition, numerical methods for such simu-
lation need to resolve unsteady bow shock motion and
shock/disturbance interaction accurately. This paper
presents and tests a new high-order upwind finite dif-
ference shock fitting method for the direct simulations
of hypersonic flows with strong bow shocks. There
are three main aspects of the new method: a simple
unsteady shock fitting formulation, new upwind high-
order finite difference schemes for spatial discretiza-
tion, and new third-order semi-implicit Runge-Kutta
schemes for temporal discretization. The results of ac-
curacy tests of the new fifth-order shock-fitting method
are presented in this paper for four test cases: 1-D
wave equation, 2-D DNS of stability of supersonic Cou-
ette flow, steady viscous hypersonic flow over a cir-
cular cylinder, and finally, the DNS of receptivity to
freestream acoustic disturbances for hypersonic bound-
ary layers over a parabola.

Introduction

The prediction of laminar-turbulent transition in hy-
personic boundary layers is a critical part of the aero-
dynamic design and control of advanced hypersonic
vehicles '1>2'L Recently, direct numerical simulation has
become a powerful tool in the study of fundamental
flow physics of the stability and transition of boundary
layers f3'4^. The direct numerical simulation approach
studies the transitional boundary layers ̂  by numer-
ically solving the time-dependent three-dimensional
Navier-Stokes equations for the temporally or spatially
evolving instability waves. Such simulation requires
that all relevant flow time and length scales are re-
solved by the numerical solutions using highly accurate
numerical methods.

'Assistant Professor, Mechanical and Aerospace Engineering
Department, Member AIAA.

Copyright ©1997 by American Institute of Aeronautics and As-
tronautics, Inc. All rights reserved.

Most DNS work on boundary layer transition are
for incompressible flows l5"14!. The DNS of compress-
ible boundary layer transition has occurred only in the
last few years. Erlebacher et al. I15'16' studied the sec-
ondary instability mechanism of compressible bound-
ary layers over a flat plate by temporal and spatial di-
rect numerical simulations. Thumm et al. t17-', Fasel
et al.[18], and Eibler et al.[19'201 performed spatial
DNS of the oblique breakdown of transition in a su-
personic boundary layer over a flat plate. Adams and
Kleiser P1'22! studied the subharmonic transition pro-
cess of a flat-plate at a freestream Mach number of 4.5
by temporal direct numerical simulation. This work
was extended to spatial DNS of a flat-plate boundary
layer of Mach 1.6 to 4.5 by Guo et al. ^3' in the same
research group. Pruett and Zang I-24-' conducted tem-
poral DNS studies of laminar breakdown in high-speed
axisymmetric boundary layers over a hollow cylinder
and a sharp cone. Pruett et al. I25"27) then performed
spatial simulations for supersonic boundary layers over
flat plates and sharp cones. These DNS studies of com-
pressible boundary layers show that the DNS of high-
speed boundary transition is feasible on existing com-
puters using efficient and accurate numerical methods.
So far, DNS studies of compressible boundary layers
have been limited to perfect gas flows over simple flat
body surfaces without the presence of shock waves.

This paper is concerned with numerical methods
for the DNS of stability and transition of hypersonic
boundary layers behind blunt bodies (Fig. 1). For the
DNS of such flows, it is difficult to apply the existing
methods due to the lack of efficient semi-implicit nu-
merical methods for compressible viscous flows, pres-
ence of shock waves, and the stiffness of the equations
in reacting hypersonic flows. This paper presents a
new high-order (fifth and sixth order) upwind finite
difference shock fitting method for the direct simula-
tion of hypersonic flows with a strong bow shock and
with stiff source terms. There are three main aspects
of the new method for hypersonic flow DNS: a new
shock fitting formulation, new upwind high-order fi-
nite difference schemes, and third-order semi-implicit
Runge-Kutta schemes recently derived t28'.

First, a shock fitting formulation, which is very
simple for the high-order discretization in three-



dimensional shock fitting calculations with unsteady
shock motion, is presented in this paper. The use of
shock fitting method makes it possible to use high-
order linear schemes for spatial discretization of the
flow equations behind the bow shock. Hussaini, Ko-
priva, Salas, and Zang '29' used the shock fitting spec-
tral method to simulate shock/turbulent interaction.
Recently, Cai '30^ used a shock fitting method to com-
pute two-dimensional detonation waves. This paper
presents a simple formulation for shock fitting calcu-
lation of three-dimensional unsteady hypersonic flows.
The current formulation is simple because the pertur-
bation relation across the shock is consistent with con-
servative flux and its Jacobian used in the conservation
equations. As a result, high-order schemes can be ap-
plied to the shock fitting calculations easily.

Second, new upwind compact and explicit high-order
finite difference schemes derived in a recent paper ̂
are used in computing inviscid fluxes. Most finite dif-
ference methods used in direct numerical simulations
have been central difference schemes I26-32-33] contain-
ing only phase errors without any numerical dissipation
errors. However, high-order central schemes are of-
ten not robust enough for convection dominated prob-
lems. Extra filtering procedures, which are equivalent
to adding numerical dissipation, are often required to
control the aliasing errors and to stabilize the com-
putations. In addition, central difference schemes of
fourth order or higher are often unstable when they are
coupled with high-order boundary schemes using sim-
ple one-sided finite difference approximations i26>34>35J.
Boundary closure schemes, which are needed because of
wide grid stencils of high-order inner schemes, often de-
termine the overall accuracy of the computations using
high-order inner schemes. For a global scheme of p-ih
order ' ', the boundary schemes have to be at least p-
1-th order. Carpenter, Gottlieb, and Abarbanel [34'35]

showed that for a sixth-order inner central compact
scheme, only a third-order boundary scheme can be
used without introducing instability. The resulting sta-
ble 3,4-6-4,3 compact scheme, which denotes a sixth-
order inner scheme with third and fourth order bound-
ary schemes at the first and second boundary points
respectively <-35\ is fourth order globally accurate even
though the inner scheme is sixth-order accurate. On
the other hand, Rai and Moin '•37^ showed that modern
upwind schemes are very robust even when they are
made high-order accurate. Ref. [37] used a spatially
fifth-order upwind-bias explicit finite difference scheme
for solving the Navier-Stokes equations. The implicit
numerical dissipation in the upwind-bias schemes is
enough to control the aliasing errors. In recent years,
many other upwind high-order schemes have also been
developed I38"41! for the direct numerical simulation of
transitional and turbulent boundary layers or other

flows.

The upwind schemes presented in [31] use central
grid stencils with built-in implicit numerical dissipa-
tion, similar to the fifth-order explicit upwind scheme
of Zingg et al. ̂  and the 4th-order compact upwind
schemes of Adams and Shariff'41-'. The current up-
wind schemes, which include both upwind compact and
explicit schemes, are more general and systematic in
derivation and analysis. The orders of accuracy of the
current upwind schemes are one-order lower than the
maximum orders the central stencils can achieve. Each
upwind scheme contains an adjustable coefficient in the
leading dissipative truncation term. The free parame-
ter is chosen so that the upwind schemes do not have
excessive numerical dissipation in the simulations and
the inner schemes are stable when they are coupled
with high-order numerical boundary schemes. The dis-
sipation errors of the schemes are set to be smaller or
comparable to the phase errors for well resolved low
wavenumber modes and to damp out unresolved higher
wavenumber modes. For the stability of the high-order
inner schemes with boundary schemes, asymptotic sta-
bility of the schemes is analyzed by computing the
eigenvalue spectrums of spatial approximations with
boundary schemes. It is found that the high-order up-
wind schemes help to stabilize the overall schemes when
they are coupled with high-order boundary closures.

Third, the time advancement of the governing
equations with stiff viscous terms in the boundary
layer or thermo-chemical nonequilibrium source terms
is solved by third-order semi-implicit Runge-Kutta
schemes I42'43!. The third-order semi-implicit Runge-
Kutta schemes are able to compute stiff reactive flow
equations with third-order temporal accuracy, and
They are unconditionally stable for the stiff terms when
the non-stiff terms satisfy explicit stability conditions
for the Runge-Kutta schemes.

Governing Equations

Though real gas effects become important as gas
temperature increases ̂  for hypersonic flow behind
a strong bow shock, perfect gas assumption is used in
this paper. The method can be extended to nonequi-
librium real-gas flow if necessary. The governing equa-
tions are the unsteady three-dimensional Navier-Stokes
equations:

dt
= (1)
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A shock fitting method is used to solve unsteady
three-dimensional viscous hypersonic flow over a wedge
shown in Figure 2. The general curvilinear three-
dimensional coordinates (£, 77, f, T) are used along the
body fitted grid lines (Fig. 2). Shock fitting methods
are used to treat the bow shock as a computational
boundary. The transient movement of the shock and
its interaction with disturbance waves are solved as
part of the solutions. Therefore, the grid surface of
77 = constant is unsteady due to the shock movement,
but the grid surfaces of £ = constant and £ = constant
are fixed plane surfaces during the calculations. In par-
ticular, the £ = constant surfaces are generated such
that they are normal to the wall surface. Therefore,
only the rj = constant grid lines change when the bow
shock moves.

The transformation relations for the current grid sys-
tems are

where J is the Jacobian of the coordinate transforma-
tion, and £,, £„, &, r)x, riy, r)z, r)t, Cr, Cy, and £, are
the grid transformation metrics, which are computed
as functions of the body shape, the grid-point distri-
bution along the grid lines, the wall-normal distance
H(£>G>T) between the shock and the wall along the
77 grid lines (see Fig. 2), and the time derivative HT.
These metrics functions are functions of time through
H and HT.

The governing equations are discretized in the uni-
form computational space. In the equations, the trans-
formed inviscid fluxes E', F', and G' are standard
flux terms with known eigenvalues and eigenvectors.
The transport flux terms E'v, F^, and G'v contain first-
order spatial derivatives of velocity and temperature.
These derivatives in the Cartesian coordinates (x, y, z)
are transformed into the computational coordinates
(£i ^iC) using a chain rule for spatial discretization.

(9)

T=t t-T

A Simple Shock Fitting Formulation

The shock fitting method treats the bow shock as a
computational boundary at 77 = f?max as

where & = 0 and £t = 0 because the ^ and C grid lines
are fixed when the shock boundary moves.

r)(x, y, z, t) = r;max = constant (17)

In the numerical simulations, the governing equation The flow variables behind the shock are determined by
(1) are transformed into the computational domain (4, the Rankine-Hugoniot relation across the shock and a



characteristic compatibility equation from behind the
shock. As shown in Fig. 2, the position and veloc-
ity of the shock front are functions of H(£, £, T) and
HT(£,£,T), which are solved as unknown variables us-
ing high-order finite difference methods. A simple for-
mulation for the governing equations for the shock
movement is derived in the section. The method is
similar to that used by Cai [30], but is simplier in ob-
taining the shock equations by using the same metrics
and flux Jacobian as those used in discretization of in-
terior governing equations.

The normal vector of the shock front is

P, = Po\l +

es.i
P,{

(7-

(itn, -

(25)

(26)

(27)
(28)

where M«o is the normal component of the incoming
Mach number relative to the shock based on the speed
of sound, u is the velocity vector, Ut is the tangential
velocity vector, «„ is the normal velocity component.
The definitions for these variables are

_ (18)

and the velocity of the shock front in the direction of
u is

rjt (19)

The flow variables across the shock are governed by
the Rankine-Hugonoit conditions:

E" — c"1s ~ C0 (20)

where the subscript s represents the variable immedi-
ately behind the shock and subscript 0 represents the
variable on the free stream side of the shock surface.
The flux F', which is the flux in the computational
space along the 77 grids line, is given by Eq. (12) as

F' =

J

where

F = F3k

(21)

(22)

(23)

The Rankine-Hugoniot relations lead to jump condi-
tions for flow variables behind the shock as functions
of Uo and the grid velocity vn, i.e.,

(24)P, = Po 1 +

CO
u • n
u — wnn

(29)

(30)
(31)

In order to compute the flow variable behind the shock
using the shock jump conditions above, the velocity
of the shock front vn is needed. The shock normal
velocity is computed by a characteristic relation behind
the shock.

In order to solve the shock movement, a character-
istic compatibility equation at the grid point imme-
diately behind the shock is needed. It is found that
the shock fitting computations and the shock geome-
try transformation relations are greatly simplified if we
derive the characteristic compatibility equation in the
conservation-law form, which can de derived directly
from Eq. (1) in the direction along the rj coordinates.
Specifically, the interior equation (1) in the compu-
tational domain at the point immediately behind the
shock front can be written as:

J dr+
dF"
drj

W_
J

9E' dG'

8r, dr J (32)

where the equation is evaluated at point s behind the
shock. In the equations, the Jacobian matrix, B'a —
(dF'ldU)a, has the following eigenvalues:

J
|Vf?|

(un - (un -vn)s,

Un -Vn -C)s, (33)

The corresponding left eigenvectors are

la, 12, • • - , IN-I, IN (34)



where N is the number of independent variables in the
equations. Specifically, the left eigenvector IN is '45-'

N

where
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-(|cn« - f u)
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£
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(35)

(36)

(37)

By definition, the left eigenvector behind the shock sat-
isfies:

IN-5' = (38)

where the flux Jacobian

B' = aF7

817
(44)

is the Jacobian of the 77 direction flux defined in the
conservation equations (10), and

dr
_

dr

dr dr dr

dr (46)

These time derivatives of the grid metrics can be de-
rived by the same methods as those used in discretiza-
tion of the interior equations.

Finally, the equation for the shock velocity can be
obtained by multiplying both sides of Eq. (43) by IN
and using the relation of (38), i.e.,

The characteristic field approaching the shock from
behind corresponds to the eigenvalue of *-j^(wn — vn +
c)a. The compatibility relation for this characteristic
field can be obtained by multiplying Eq. (32) by IN,

du fW dE1 dF' 8G'
~ N ' V J d£ drj 9C

On the other hand, the shock jump condition (20)
can be rewritten as

'] = (Fs-F0)-a
+(US -U0)b = 0 (40)

where

-1
dr !N • (U, - U0)]

(47)

where the term IN • ̂ - is computed using the char-
acteristic relation (39), in which the spatial derivatives
are discretized together with the discretization of the
interior points for the Eq. (10) using the same schemes
at the interior algorithm applied to boundary behind
the shock. In the equation above, J£ and |̂  can be
expressed as function of H and HT as follows

p = di(€, C, H, Hr) + d2(e, C, H, HT) f. (48)
fla

= d(t,C,H,Hr) (49)

a = .

* = (?).-

. (41)

(42)

Taking derivative of Eq. (40) with respective to r in
the computational space leads to

, 8U. dU0

(43)

The coefficients, di, d^, and vector g are functions of
grid metrics.

Therefore, the equation for the shock acceleration
can be obtained from Eqs. (48) to (49) in the following
form:

dHT
dr C,

O) -Q— (50)



dJL
6r (51) dimensional linear wave equation:

The two equations above describe the shock normal
velocity and shock shape, and they can be integrated
in time simultaneously with the interior flow variables
using Runge-Kutta methods. After the values ofH and
HT are determined, the flow variables behind the shock
can be computed by the jump conditions across the
shock using Eqs. (24) to (28). The grids and metrics
are modified according to the new values of H and Hr.

The current formulation is simple because the gov-
erning equations for the shock movement are derived
using conservative variable and flux Jacobian in Eq.
(43) using the relation (38). The same discretization
of the interior governing equations is used to evaluate
IN • ( ^ f ) s a^ grid points immediately behind the shock.
In addition, all geometric definitions of the shock front
are the same as the grid metrics used in the interior
equation transformation, which are stored in the com-
puter. In doing so, the current approach avoids compli-
cation of using the non-conservation variables and lo-
cally defined geometric parameters for the shock front
in deriving the time derivatives of the shock jump con-
dition.

High-Order Upwind Schemes for
Spatial Discretization

The governing equation (10) is discretized in the
computational domain (£, r), C, T] using the method
of lines. Because there is no shock in the computa-
tional domain, high-order finite difference methods are
used for spatial discretization of the equations, where
the inviscid and viscous flux terms are discretized us-
ing different methods: central difference schemes for
the viscous flux terms and upwind schemes for the in-
viscid flux terms.

In Ref. [31], a family of finite-difference upwind
schemes of third, fifth, and seventh orders have been
derived for the direct numerical simulations of hyper-
sonic boundary layers. Either compact or non-compact
(explicit) schemes can be used. Each upwind scheme
uses a central stencil with a free damping parameter
a, which is chosen such that the inner scheme is stable
when it is coupled with high-order numerical bound-
ary schemes and the dissipation errors are smaller or
comparable to phase errors. These high-order upwind
schemes are used for the spatial discretization in the
shock-fitting algorithm.

The upwind schemes are described using the one-

du du
= 0 a<x<b (52)

where c > 0. The downwind algorithm for negative c
can be derived similarly.

The linear wave equation (52) is solved by the
method of lines, where the spatial derivative, du/dx,
is first discretized in space while keeping the tempo-
ral derivative hi the equations. The general finite-
difference approximation for du/dx located at i-th grid
point can be written as I32'41-*

Mo

k=-M+M0+l

= \ £ ai+kui+k (53)

where uniform grids with grid spacing of h are assumed,
and u'i+k is the numerical approximation of du/dx lo-
cated at (z'+&)-th grid point. On the right hand side of
the equation, a total of N grid points are used for U{+k
with JVo points bias with respect to the based point
i. A similar grid combination of M and MO is used
for u'i+k on the left hand side of the equation. In this
paper, a scheme using this grid combination is termed
the N-No-M-Mo scheme, which includes both compact
and explicit schemes as its special cases. For example,
the schemes are compact finite difference schemes when
M >2, and they are explicit finite difference schemes
when M — I and MO = 0.

Ref. [31] considered a family of upwind compact and
explicit high-order finite difference methods using cen-
tral grid stencils, i.e.,

N = 27VO + 1 (54)
M = 2M0 + 1 (55)

The coefficients 0,-+* and 6,-+^ of the upwind schemes
are determined such that the order of the schemes is
one order lower than the maximum achievable order for
the central stencil, i.e, the orders of the upwind schemes
are always odd integers of p = 2(No + MQ) — I . As a
result, there is a free parameter a in the coefficients
a,-+fc and 6,-+^. The free parameter is set to be the
coefficient of the leading truncation term which is a



derivative even order, i.e.,

Mo n

E »««»«4
k=-M0 k=-No

(56)

160
T" •40u,-+i + -ru,-+j (58)

Fifth-Order Upwind Explicit Schemes:

where p = 2(A^0 + Mo) — 1, and a is the free parameter.
All schemes with nonzero a are p-th order accurate,
and they are central schemes of (p+l)-th order when
a = 0. The choice of a is not unique, and it has ef-
fects mainly on the magnitudes of numerical dissipa-
tion. The specific value of a for an upwind scheme is
chosen to be large enough to stabilize the high-order
upwind inner scheme when it is coupled with stable
boundary closure schemes, and to be small enough so
that the dissipation errors are comparable to the dis-
persion errors of the inner scheme.

The detailed expressions of the upwind compact and
explicit upwind schemes of fifth and seventh orders are
given below. Ref. [31] chose a set of "recommended"
values of a based on the accuracy and stability analysis.
Since compact schemes with large M involve costly so-
lutions of linear equations in computing derivatives, we
are mainly interested in three-point compact schemes
(M = 3). The third-order compact and explicit up-
winds schemes and the upwind seventh-order five-point
compact schemes with a 5-2-5-2 stencil are given in [31].

Fifth-Order Upwind Compact Schemes:

"„• = —— ai+k ui+k
*=-3

(59)

where

= ±45 + f c
0-fa 6,- = 60

These 7-3-1-0 schemes are fifth-order upwind scheme
when a < 0, and they are sixth-order central scheme
when a = 0. The recommended value for a is a = —6,
and the corresponding fifth-order upwind explicit inner
scheme is

105

— ui+i - 6«i+2 + 2 (60)

where

(57) It is noted that the fifth-order upwind bias scheme of
Rai and Moin ' 'is a special case of the current 5th-
order upwind schemes corresponding to a = —12 and
Oi+3 = 0. The stencil of the scheme becomes upwind-
bias (6-2-1-0). The recommended upwind scheme
above has less numerical dissipation because of smaller

Ui = 0 — 15a

_"~1 I s3, 5.

= 60
= 20 -5a

Seventh-Order Upwind Compact Schemes:

These 5-2-3-1 schemes are fifth-order upwind compact
schemes when a < 0, and they reduce to the sixth-
order central compact scheme when a = 0. The rec-
ommended value for a is a — — 1, which corresponds to
the following fifth-order upwind compact inner scheme:

(61)

where

1
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_ 375

= f-|a
= 60

65

a,-_2 = -3->
&,-_! = a

These 7-3-3-1 schemes are seventh-order upwind com-
pact schemes when a > 0, and they are eighth-order
central compact scheme when a ~ 0. The recom-
mended value for a is a = 36, and the corresponding
seventh-order upwind compact inner scheme is

T-
4

Seventh-Order Upwind Explicit Schemes:

(62)

High-order finite difference schemes require addi-
tional numerical boundary schemes at grid points near
the boundaries of the computational domain. For a
p-ih order interior scheme, the accuracy of boundary
schemes can be (p— l)-th order accurate without reduc-
ing the global accuracy of the interior scheme. For ex-
ample, for the fifth-order inner upwind compact scheme
given by Eq. (58), two boundary schemes are needed at
grid point at i = 0, 1, and i = N — 1, N. It is desirable
that the boundary schemes are at least fourth-order so
that overall schemes are fifth-order accurate. Both one-
sided compact and explicit finite difference schemes can
be used as numerical boundary schemes. The expres-
sions of the boundary schemes of up to sixth order can
be found in [31]. The orders of accuracies for stable
overall schemes when they are coupled with high-order
interior schemes were analyzed in [31] and are summer-
ized in Table 3, where the notation of 3,4-6-4,3 denoted
by Carpenter et al. as a sixth-order inner scheme with
third and fourth order boundary schemes at the first
and second boundary points respectively ^35\

Discretization of Inviscid Flux Vectors

«• =

where

a 7(du*\ ,
~ ~ (63)

For the inviscid flux vector in the governing equa-
tion (10), the flux Jacobians contains both positive and
negative eigenvalues in general. In this paper, a simple
local Lax-Friedrichs scheme is used to split the inviscid
flux vectors into positive and negative wave fields. For
examplcj the flux term B' in Eq. (10) can be split into
two terms of pure positive and negative eigenvalues as
follows

a,-±2
a,-±i
a,

= ±12 t
= ±48 - 2L

hi = 60

These 9-4-1-0 schemes are seventh-order upwind ex-
plicit schemes when a > 0, and they are eighth-order
central explicit scheme when a = 0. The recommended
value for a is a = 36, and the corresponding seventh-
order upwind explicit inner scheme is

1
60/i

15 27

13

15—

9

19
yMj-3

tr 21+45ui+1 -

(64)

Ef:

where

(65)

*- • i'
(66)

(67)

(68)

where A is chosen to be larger than the local maximum
eigenvalues of E':

+ w'2 + c (69)

where

Numerical Boundary Schemes (70)



The parameter e is a small positive constant added for
the smoothness of the splitting. The flux E'+ and E'_
contain only positive and negative eigenvalues respec-
tively. Therefore, in the spatial discretization of Eq.
(10), the flux derivatives are split into two terms

= -^2^, ai+k Ui+k
k=-2

(£=2,3, • • - , # - 2 ) (74)

BE' _ dE'+
~

dE'_
(71)

where the first term on the right hand side is discretized
by an upwind high-order finite-difference method and
the second term is discretized by a downwind high-
order finite-difference method.

Numerical diffusion is introduced in the Lax-
Friedrichs schemes by the splitting of the flux vec-
tor. The first-order upwind schemes using the Lax-
Friedrichs schemes is very numerically diffusive. On
the other hand, the inviscid fluxes can also be split ac-
cording to their characteristic fields ^6\ which is less
diffusive. But the characteristic splitting is computa-
tionally more expansive and the numerical diffusions of
the Lax-Friedrichs schemes become much smaller when
fourth or higher order upwind schemes are used for the
flow field without shock waves.

Discretization of Transport Flux Vectors

For the compressible Navier-Stokes equations (10)
in a conservation-law form, the second-order deriva-
tives do not appear explicitly in the equations. Instead,
they appear as first-order derivatives in the transport
flux vectors in Eq. (4). For such equations, it is eas-
ier to discretize the transport terms by applying cen-
tral finite-difference operators for the first derivative
twice '•4?J. The approximation of the first-order deriva-
tive for computing the viscous terms can be done using
standard central compact or explicit schemes with one-
sided difference approximation For example, the sixth-
order central inner schemes (5-3-3-1) and the sixth-
order compact boundary schemes are as follows:

15 , _ !_ /215
YUjv ~ h \T*

(75)

(76)

where the coefficients for the inner schemes are given
by Eq. (57) with a = 0. The formulas can be written
into matrix form

BU' = AU (77)

where U = («o> • • • , M/v)T- The derivative of the vis-
cous flux in Eq. (10) can be discretized using the same
first-order operator above. The second-order approx-
imation is 6th-order accurate even though the order
at the boundary may be degenerated. Though such
discretization leads to a wider grid stencil than us-
ing central compact schemes to second-order deriva-
tive directly, the eigenvalue analysis shows that such
an approach using the sixth-order central schemes with
boundary closures is stable when it is applied to the
one-dimensional linear heat equation. Other similar
central compact and explicit high-order schemes for
second-order derivatives can be obtained easily.

Semi-Implicit Runge-Kutta Schemes for
Temporal Discretization

60«'0 + 300*4 = (-197uo -

+300w2 - + 25«4 - (72)

-50«i 10«s - (73)

The spatial discretization of the governing equations
leads to a system of first-order ordinary differential
equations for the flow variables, and the accelerations
and speeds of the shock fronts. For reacting hypersonic
flow simulations, the thermo-chemical source term W
is often stiff in temporal discretization. In Ref. [42,43],
Zhong derived three kinds of high-order semi-implicit
Runge-Kutta schemes for high-order temporal integra-
tion of the governing equations. These schemes addi-
tively split the governing equations into stiff and non-
stiff terms in the form of

i-i u'i-i + bi u'f + bi+i u'i+i (78)



where u is the vector of discretized flow field variables,
f is non-stiff terms resulted from spatial discretiza-
tion of the flux terms which can be computed explic-
itly, and g is stiff thermo-chemical source terms which
need to be computed implicitly. The coefficients of the
semi-implicit schemes were derived such that they are
high-order accurate with the simultaneous coupling be-
tween the implicit and explicit terms. In addition, the
schemes are unconditionally stable for the stiff terms
when a CFL condition is satisfied for the explicit terms.

Three versions of 3-stage third-order semi-implicit
Runge-Kutta schemes have been derived to integrate
Eq. (78) by simultaneously treating f explicitly and g
implicitly. The three versions of the third-order accu-
rate ASIRK time-stepping methods are:

ASIRK-3A Method:

ki =
k2 =

= A{f(un

u,n+l _ u

+ a3k3)}

ASIRK-3B Method:

[I - ha! J(u")] ki = fc{f (u») + g(u»)}
[I-/w2J(un)]k2 =

ASIRK-3C Method:

= A{f (u»

g(u"+c2iki)}
[I — /ia3J(un + c3iki + C32k2)] ks =

g(u" + c31ki + c32k2)}

full implicit method A. However, for some stiff nonlin-
ear problems, method A is necessary because it is more
stable than the Rosenbrock semi-implicit Runge-Kutta
method. These third-order Semi-Implicit Runge-Kutta
methods are used for time-accurate computations in
the direct simulation of transient hypersonic boundary
layers.

The parameters of the semi-implicit Runge-Kutta
methods were chosen based on both stability and accu-
racy requirements with the simultaneous coupling be-
tween the explicit and implicit terms. The optimal
parameters were computationally searched by simulta-
neously imposing the stability and accuracy conditions
discussed above. The coefficients obtained and ana-
lyzed in Ref. [43] are

ASIRK-3A, ASIRK-3B, and ASIRK-3C:
1 " ~ ~ " " ~ ~ ~ ~ " " 1 " """"""*

~ 8
— 252 r-f-"32- §6

ASIRK-3A:
01 = .485561 a2 = .951130 a3 = .189208
c21 = .306727 c3i = .45 c32 = -.263111

ASIRK-3B:
ai = 1.40316 a2 = .322295 as = .315342
C2i = 1.56056 csi = | c32 = -.696345

ASIRK-3C:
Q! = .797097 a2 = .591381 a3 = .134705
c2i = 1.05893 c3i = | c32 = -.375939

where 01, a2, 03, c2i, and c32 are irrational numbers
with six significant digits. The double-precision values
of these parameters can be found in Ref. [43].

The first method uses diagonally implicit Runge-
Kutta methods for stiff term g, which leads to a non-
linear equation at every stage of the implicit calcula-
tions if g is a nonlinear function of u. The second
and third methods use linearized implicit schemes for
the stiff term g. Methods B and C, which are similar
to linearized implicit methods commonly used in com-
puting reactive flows '•48% are more efficient than the
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Numerical Results

A three-dimensional solver has been written by us-
ing explicit high-order upwind schemes for the spa-
tial discretization with a high-order shock fitting al-
gorithm. The compact schemes will be implemented
later. The spatial discretization has the option of a
third-order upwind scheme '31-', fifth-order upwind (60),
and seventh-order upwind schemes (64). In the shock
fitting algorithm, the derivatives of the shock shape
H£, H(, Hr£, and HT{ are needed in the shock fitting
algorithm. They are numerically evaluated using the
standard sixth-order compact central scheme shown in
Eqs. (72) to (76).

1. Linear Wave Equation (1-D)

The compact and explicit upwind schemes presented
in this paper are tested with numerical computations
of the 1-D linear wave equations given in Eq. (52). The
parameters of the calculations axe: a = 0 , 6 = l , c = l ,
N + 1 uniform grid points, and the initial condition is

u(x, 0) = 0 < z < 1 (79)

Both periodic and non-periodic boundary conditions
are used to test the accuracy of schemes with and with-
out boundary closures. In order to compare the spatial
accuracy of the schemes, the time marching scheme is
a third-order Runge-Kutta scheme using a very small
time step corresponding to a CFL number of 0.005.
The grid refinement in time is used to ensure that the
solutions are independent of the temporal step sizes
so that the temporal errors are much smaller than the
spatial errors.

The sixth-order standard central compact scheme
with stable 3,4-6-4,3 boundary closure and a fourth-
order compact central 7-3-5-2 scheme of Lele ̂  for
spectral-like resolution are also tested. The 7-3-5-2 op-
timized scheme is fourth-order accurate but has smaller
phase errors at large u. Though the order of the scheme
is lower than the maximum achievable order for a given
stencil, the degree of freedom in deriving the coeffi-
cients is used to minimize the phase errors in resolv-
ing high wave-number modes. Compared with schemes
with maximum order accuracy, the optimized schemes
have lower accuracy for resolving modes of small u,
but they have higher accuracy in resolving modes of
larger u>. It is expected that the optimized schemes
resolve a range of length scales better than the maxi-
mum order schemes. Similar approaches have also been
used in optimizing finite difference schemes for various
applications I«,4i>«.BO]_

The formal orders of accuracy of the new schemes
are tested by computing the wave equation with a fixed
u = 2 and three sets of grids: N = 25,50,100. For a
global p-th order scheme, the error should be reduced
by a factor of 2P times when grid size is reduced by
half. The results are shown in Table 2. The results
in the table confirm the formal orders of accuracy of
the schemes. The numerical stability also agrees with
the eigenvalue analysis. The results also show that the
accuracy of the boundary closure dominates the over-
all accuracy of the schemes. For the 3,4-6-4,3 central
compact scheme, the result is less accurate than the
upwind 4,4-5-4,4 schemes because the central scheme
is only third-order accurate. The table also shows that
the accuracy of the upwind compact 7-3-3-1 schemes
is substantially low when fifth-order compact bound-
ary schemes are used. But the fifth-order accuracy of
the 7-3-3-1 schemes is obtained when they are coupled
with fifth-order explicit boundary schemes. The rea-
son seems to be that the compact boundary closures
are more unstable than the explicit boundary schemes.
More studies are needed to resolve this issue.

2. Supersonic Couette Flow Stability (2-D)

Compressible Couette flow is a wall-bounded paral-
lel shear flow which is a simple example of hypersonic
shear flows. In Ref. [51], we have developed two com-
puter codes using a fourth-order finite-difference global
method and a spectral global method to compute the
linear stability of the supersonic Couette flow, as well
as boundary layer flows. The accuracy of the LST anal-
ysis is checked by comparing the results obtained from
the two approaches.

Because the mean flow is a parallel flow, the lin-
ear stability analysis based on the full Navier-Stokes
equations does not involve the parallel approximation
of a developing boundary layer. Therefore, we use
the compressible two-dimensional Couette flow to test
the numerical accuracy of the new high-order upwind
schemes for solving the time-accurate Navier-Stokes
equations. The shock fitting procedure is turned off
because there is no shock. Both steady and unsteady
two-dimensional computations are tested.

a. Steady Flow Solutions

We first used the 5th-order explicit upwind Navier-
Stokes code to compute the steady solutions of the su-
personic Couette flow. The results are compared with
"exact" solutions obtained by a shooting method with
several order of magnitudes smaller errors. The flow
variables are nondimensionlized by their corresponding
values at the upper wall. The numerical simulation are
conducted using several sets of uniform grids in order
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Table 1: Numerical errors for computations of super-
sonic Couette flow using high-order upwind schemes,
(d = \\e\\, and e, = \\e\\,)

Third Order Scheme
Grids

31
61

Grids
31
61

a
0.125
0.125

a
-1
-1

6l x 10-7

64.0
7.25

Fifth Order
ei x 10-''

6.45
0.238

ratio e

8.8
Scheme

2 X 10~7

12.9
0.991

ratio 62 x 10~7

27
1.68

0.0417

ratio

13

ratio

40

to evaluate the accuracy of the algorithm. Many test
cases with different Mach number and wall tempera-
ture have been tested. The results shown in this paper
are those for the following flow conditions: MOO = 2,
the upper wall is an isothermal wall with dimension-
less TOO = 1 while the lower wall is an adiabatic wall.
The gas is assumed to perfect gas with 7 = 1.4 and
Pr = 0.72. The viscosity coefficient is calculated using
the Sutherland's law,

p = .

where C is a taken to be 0.5.

(80)

Figure 3 shows the steady temperature profile ob-
tained by using a fifth-order upwind scheme with 121
uniform grid points. The numerical results agree well
with the exact solutions. Figure 4 shows the same
steady temperature profile. The numerical solutions
are obtained using three sets of grids. The results show
that all three sets of grids resolve the steady flow field
very well. The quantitative numerical errors of the sim-
ulations using the three grids are listed in Table 1. The
table shows that the numerical errors for a fifth order
upwind scheme are of the order of 10~6 using 31 grid
points and 0.4 x 10~7 using 61 grid points. The theoret-
ical ratio of the errors between the coarse and the fine
grids are 8 for a third-order scheme and 32 for a fifth-
order scheme. The results in the table show that the
numerical algorithms are able to maintain such high
orders of accuracy.

b. Unsteady Flow Solutions

We conduct numerical simulations for the temporal
stability of the compressible Couette flow by simulat-
ing the development of given initial disturbances in the
two dimensional flowfield. The initial conditions are

the steady flow solutions plus disturbances given by a
set of eigenfunctions obtained by linear stability analy-
sis. For small initial disturbances, the growth or decay
of the disturbances are given by the eigenvalue of the
eigen-mode.

The subsequent unsteady flow field is solved by
computing the unsteady Navier-Stokes equations us-
ing the fifth-order upwind scheme. The same stretched
grids are used in y direction as that used in the LST
calculation ^51\ The computational domain in the sim-
ulation is one period in length in the x direction. Pe-
riodic boundary conditions are used in the x direction.
The flow conditions are: MOO = 2 and /&«, = 1000.
For this case, the initial disturbance wave has a di-
mensionless wave number of a = 3, and the eigenvalue
obtained from the temporal linear stability analysis is

u — <jjr + ui
= 5.52034015848 -0.132786378788* (81)

where a negative ui means that the disturbances will
decay in time with a dimensionless frequency of wr.

Figure 5 shows the comparison of the DNS results
and the LST prediction for the time history of pressure
and temperature perturbations at a fixed point in the
2-D supersonic Couette flow field. The computation
uses a 40 x 100 grid. The corresponding time history for
velocity components is shown in Fig. 6. These figures
show that the instantaneous perturbations of all flow
variables for the 2-D numerical simulations agree very
well with the linear stability analysis.

Figures 7 and 8 show the distribution of instanta-
neous flow perturbations in the x and y direction at
the end of about six periods in time. Again the re-
sults agree well between the DNS results and the LST
results.

The results of the two-dimensional simulation of the
steady and unsteady flows for Couette flow stability
show that the current fifth-order upwind scheme is
high-order accurate and is suitable for stability and
transition simulations.

3. Steady Hypersonic Flow Over a Cylinder

A test case of steady 2-D hypersonic flow over a
cylinder is considered because there are experimental
results and accurate numerical solutions obtained by a
shock-fitting spectral method t52^ available for compar-
ison. The flow conditions are

= 5.73
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fleoo = 2050
Too = 39.6698.fi:
Tw = 210.02tf
7 = 1.4
Pr = 0.77
Cylinder Radius: r = 0.0061468m

The numerical results are obtained by using the new
fifth-order shock fitting schemes. Figure 9 shows a set
of 80 x 60 grids used in the simulations for the shock
fitting calculations. The grids are stretched in both the
streamwise and the wall-normal direction. Figure 10
compares the computed temperature contours for flow
over a circular cylinder. The upper half contours are
the results obtained by the spectral method, taken from
[52], and the lower half contours are current results
using a 80 x 60 grid. The two solutions agree very well
for all the points in the flow field.

The pressure coefficients along cylinder surface com-
puted by the high-order finite difference shock fitting
methods are compared with experimental results and
spectral results '52-' in Fig. 11. The heat transfer rates
along the surface are compared in Fig. 12. The solu-
tions of the Navier-Stokes equations obtained by the
current fifth-order upwind scheme agree well with the
spectral methods results. The slight differences be-
tween the numerical results and the experiments, which
are consistent with other numerical results, may be due
to the differences in flow conditions between the exper-
iments and the simulation.

The grid convergence of the results are tested by re-
fining the grids used for the simulation. Figures 13 and
14 compare the the surface pressure coefficients and
heating rates along the surface for three sets of grids.
The results show that the results are highly accurate
for relatively coarse grids.

4. Receptivity of A Hypersonic Boundary Layer

The last test case considered is the numerical simula-
tion of the receptivity of a two-dimensional boundary
layer to weak freestream acoustic disturbance waves
for hypersonic flow past a parabolic leading edge at
zero angle of attack. The flow phenomena and the de-
tailed descriptions of such flows are given in Ref. [53].
The purpose of the test case is to evaluate the numer-
ical accuracy of such simulations for given grid points
by grid refinement studies. We test the accuracy of
the steady and unsteady computations using the fifth-
order explicit upwind shock fitting methods using a set
of 160 x 120 grids.

In the simulation, the freestream disturbances are su-
perimposed on the steady mean flow to investigate the

development of T-S waves in the boundary layer with
the effects of the bow shock interaction. The freestream
disturbances are assumed to be weak monochromatic
planar acoustic waves with wave front normal to the
center line of the body. The perturbations of flow vari-
able introduced by the freestream acoustic wave before
reaching the bow shock can be written in the following
form:

P'
P'

\u'\, \p'\, and \p'\ are perturbation ampli-
tudes satisfying the following relations:

Kloo = e , It/loo = 0

where e is a small number representing the freestream
wave magnitude. The parameter k is the dimension-
less freestream wave number which is related to the
dimensionless circular frequency u by:

(83)

The corresponding dimensionless frequency F is de-
fined as

(84)

The body surface is a parabola given by

(85)

where 6* a given constant and d* is taken as the ref-
erence length. The body surface is assumed to be a
non-slip wall with an isothermal wall temperature TJJ.

The specific flow conditions are:

Moo = 5
2£= 3434.62.989 #
T* = 1000 .FT

t = 1.5 x 1C-3

p*00= 698.26 Pa
7=1.4

R* = 286MNm/kgK Pr = 0.72
b* = 40m-1 d* = Q.lm
T* = 288 K T* = 110.33 K
H* = 0.17894 x lQ-4kg/ms
Nose Radius of Curvature = r* = 0.0125m
Reoo = p*U*d*/u* = 5025.12
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b. Steady Flow Solutions

The steady flow solutions of the Navier-Stokes equa-
tions for the viscous hypersonic flow over the parabola
are obtained by using the new fifth-order explicit un-
steady computer code and advancing the solutions to a
steady state without freestream perturbations. Figure
15 shows steady flow solutions for a set of 160 x 120
computational grid, pressure contours, and Mach num-
ber contours.

The numerical resolution of the 160 x 120 grid is eval-
uated by comparing their solutions with fine 320 x 240
grid solutions. Figure 16 compares the steady solu-
tion of the bow shock shape in x-y coordinates for two
set of grids. Figures 17 and 18 compare the pressure
profile behind the bow shock shape and the pressure
on the body surface for the two set of grids. Figure
19 shows the comparison for Mach number along the
stagnation line. All these steady solutions show that
the two sets of results agree with each other very well,
and the steady solutions are well resolved by the grids.

b. Unsteady Flow Solutions

In this section, the generation of boundary-layer T-
S and inviscid instability waves by freestream acoustic
disturbances is considered for hypersonic flow over a
parabolic leading edge with various freestream distur-
bance wave numbers or frequencies. The dimensionless
freestream wave numbers are k = 20, and the corre-
sponding dimensionless frequency F x 10~6 is 4776.
Figure 20 shows the contours for the instantaneous
temperature, pressure, and the velocity component in
y direction in the unsteady simulation. The numerical
solutions are obtained by using the 160 x 120 grids.
The instantaneous contours show the development of
first-mode instability waves in the boundary layer on
the surface.

Again, grid refinement is used to check the numerical
resolution of the 160 x 120 grids for unsteady DNS
simulations by comparing with the results of the double
grid case. The instantaneous solutions of the two test
runs are compared on the body surface and behind the
bow shock.

Figure 21 compares the distribution of instanta-
neous entropy perturbations along the parabola sur-
face. The distribution of instantaneous entropy per-
turbations along the bow shock surface is plotted in
Fig. 22. The unsteady solutions of the two sets of grids
agree very well. Therefore the current grids for the new
fifth-order upwind schemes resolve the instability wave
well. Figure 23 shows the numerical results of the in-
stantaneous normal bow shock velocities vs. the shock

a; coordinates for the case of k = 15. Again the grid
resolution for the instability waves is satisfactory.

In the unsteady simulations, the bow shock oscil-
lates due to freestream disturbances and the reflec-
tion of acoustic waves from the boundary layer to the
shock. It is important that the numerical simulation
resolves the unsteady shock motion accurately. The
current high-order shock fitting method is found to be
able to compute the unsteady flow fields and the un-
steady shock motion very accurately. A simple way
to check the accuracy of the numerically computed
unsteady shock/disturbances interaction is shown in
Fig. 24, which shows the time history of the instanta-
neous pressure perturbation at the point immediately
behind the bow shock at the center line for the case
of k = 40. In the initial moment of imposing the
freestream disturbances, there is no reflected waves
from the undisturbed steady boundary layer. The
freestream disturbance wave transmission relation can
be predicted by linear theory such as that derived by
Mckenzie and Westphal ^54l At later time, the wave
pattern changes because the disturbance waves enter
the boundary layer and generate reflected waves back
to the shock. The figure shows very good agreement
between DNS and linear predictions on the pressure
perturbation due to freestream disturbances.

Figure 25 compares the time history of the instanta-
neous pressure perturbation at the point immediately
behind the bow shock at the center line for the two
grids. The results agree very well for the two cases.

Again, these results show that the current unsteady
simulations with fifth-order accurate shock fitting are
highly accurate for hypersonic boundary layer DNS
studies.

Conclusions

This paper has presented and tested a new high-
order upwind finite difference shock fitting method for
the direct numerical simulations of hypersonic flows
with strong bow shocks. The results of accuracy tests
of the new fifth-order shock-fitting method are pre-
sented in this paper for four test cases: 1-D wave equa-
tion, 2-D DNS of stability of supersonic Couette flow,
steady viscous hypersonic flow over a circular cylinder,
and finally, the DNS of receptivity to freestream acous-
tic disturbances for hypersonic boundary layer over a
parabola. The results show that the new schemes are
very accurate for steady and unsteady simulations of
hypersonic flows with a bow shock. Work is currently
underway to extend the methods for DNS of hypersonic
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flows over three-dimensional non-axisymmetric blunt
cones.
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Table 2: Ll Errors of solving wave equation with non-periodic boundary conditions using schemes
with numerical boundary closures. The initial condition is w(a;,0) = sin(2?ra;). For each scheme,
three sets of grids N are used in a fixed computational domain to compute the error ratios by grid
refinement.

Schemes N
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:
Inner:

BC:
Order:

3-1-3-1 (Upwind, a = .25)
3,3-3-3,3 explicit
3
5-2-1-0 (Central, a = 0)
3,3-3-3,3 explicit
3
5-2-1-0 (Upwind, a = .25)
3,3-3-3,3 explicit
3
5-2-1-0 (Upwind-Bias Stencil, a = 2)
3,3-3-3,3 explicit
3
7-3-3-1 (Central, a = 0)
3,4,4-6-4,4,3 compact
4
7-3-5-2 (Central, Lele's Spectral-Like)
4,4,4-4-4,4,4 compact
4
5-2-3-1 (Central, a = 0)
4,4-5-4,4 compact
5
5-2-3-1 (Upwind, a = -1)
4,4-5-4,4 compact
5
7-3-1-0 (Upwind, a = -6)
4,4,4-5-4,4,4 explicit
5
7-3-3-1 (Upwind, a = 36)
5,5,5-7-5,5,5 compact
6
7-3-3-1 (Upwind, a = 36)
5,5,5-7-5,5,5 explicit
6
9-4-1-0 (Upwind, a = 36)
5,5,5,5-7-5,5,5,5 explicit
6

25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100
25
50
100

Cl
.519 (-3)
.230 (-4)
.192 (-5)
.363 (-3)
.727 (-4)
.453 (-5)
.520 (-3)
.339 (-4)
.374 (-5)
.190 (-2)
.273 (-3)
.375 (-4)
.972 (-3)
.350 (-4)
.246 (-5)
.646 (-4)
.103 (-4)
.327 (-6)
.635 (-4)
.560 (-5)
.163 (-6)
.112 (-3)
.351 (-5)
.110 (-6)
.124 (-3)
.400 (-5)
.128 (-6)
.334 (-4)
.208 (-5)
.159 (-5)
.403 (-4)
.636 (-6)
.996 (-8)
.472 (-4)
.649 (-6)
.102 (-7)

ei(N)/ei(N/2)

.226 (+2)

.120 (+2)

.500 (+1)

.160 (+2)

.153 (+2)

.908 (+1)

.697 (+1)

.728 (+1)

.277 (+2)

.142 (+2)

.629 (+1)

.314 (+2)

.113 (+2)

.343 (+2)

.319 (+2)

.319 (+2)

.310 (+2)

.312 (+2)

.160 (+2)

.131 (+1)

.633 (+2)

.639 (+2)

.728 (+2)

.638 (+2)
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Table 3: Summary of upwind compact and explicit schemes with recommended values of a and the
order of stable boundary closure schemes.

Inner Scheme Truncation______Stable B.C.________Recommended a___
3-1-3-1 %h3u\*} i J I j P J i y i
5-2-3-1 f^s<4S) 4,4-5-4,4 or 5,5-5-5,5 -1
7-3-3-1_____gih7^_______5,5,5-7-5,5,5____________36_______
5-2-1-0 %hzuf} 3,3-3-3,3 T/l
7-3-1-0 f^5«,-6) 4,4,4-5-4,4,4 or 5,5,5-5-5,5,5 -6
9-4-1-0____Iffe7^______5,5,5,5-7-5,5,5,5___________36_______
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Figure 1: A schematic of a generic hypersonic lifting
vehicle with boundary-layer transition.

L(oo 0.4 0.6 0.8 1.0

Figure 3: Variation of steady base flow temperature
profile for adiabatic lower wall with M&, = 2. The nu-
merical solution is obtained using a fifth-order upwind
scheme using 121 grid points.

Freestream Waves

bow shock 0.2 0.4 0.6 0.8 1.0

Figure 2: A schematic of 3-D shock fitted grids for the
direct numerical simulation of hypersonic boundary-
layer receptivity to freestream disturbances over a
blunt leading edge.

Figure 4: Variation of steady base flow temperature
profile for adiabatic lower wall with M^ = 2. The nu-
merical solutions are obtained using a fifth-order up-
wind scheme with three sets of grids.
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Figure 10: Comparison of computed temperature con-
tours for flow over a circular. The upper half contours
are taken from Kopriva (1993), and the lower half con-
tours are current results using a 80 x 60 grid.
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Figure 12: Comparison of heat transfer coefficients
along cylinder surface.
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Figure 13: Comparison of pressure coefficients along
cylinder surface. The results are obtained using three
set of grids.
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Figure 11: Comparison of pressure coefficients along Figure 14: Comparison of heat transfer coefficients
cylinder surface. along cylinder surface. The results are obtained using

three set of grids.
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Figure 15: Steady flow solutions for computational grid (upper figure) where the bow shock shape is obtained as
the freestream grid line, pressure contours (middle figure), and Mach number contours (lower figure).
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Figure 16: Comparison of steady solution of the bow Figure 18: Comparison of steady solution of the pres-
shock shape in x-y coordinates for two set of grids. sure profile along the body surface for two set of grids
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Figure 17: Comparison of steady solution of the pres-
sure profile behind the bow shock shape for two set of Figure 19: Comparison of steady solution of the Mach
grids number along the stagnation line for two set of grids.
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Bow Shock

Forcing Disturbances
After Interacting with Shock

Acoustic Wave

Instability Waves
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Figure 20: Instantaneous contours of perturbations of flow variables: temperature (upper figure), pressure (middle
figure), and velocity component in y direction (lower figure).
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Figure 21: Distribution of instantaneous entropy per-
turbations along the parabola surface.

i

Figure 22: Distribution of instantaneous entropy per-
turbations immediately behind the bow shock.

Figure 24: Time history of the instantaneous pressure
perturbation at the point immediately behind the bow
shock at the center line.

160x120 Grid
320x240 Grid

Figure 25: Comparison of the time history of the in-
stantaneous pressure perturbation at the point imme-
diately behind the bow shock at the center line.

Figure 23: Instantaneous normal bow shock velocities
vs. the shock x coordinates.
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