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Abstract

This paper presents a semi-implicit method for ef-
ficient and high-order time-accurate computations for
unsteady viscous hypersonic flows over fixed or mov-
ing bodies using Navier-Stokes equations. The equa-
tions are discretized in space using a second-order TVD
scheme on moving structured grids. If explicit schemes
are used to advance the equations in tune, the small
grid sizes in wall-normal direction in the boundary lay-
ers imposed severe restriction on the time steps. In
the current method, the spatial discretization of the
governing equations is separated into stiff terms in-
volving derivatives along the wall-normal direction and
non-stiff terms of the rest of the equations. The split
equations are then advanced in time using second and
third-order semi-implicit Runge-Kutta schemes so that
the non-stiff streamwise terms are treated by explicit
Runge-Kutta methods and stiff wall-normal terms are
simultaneously treated by implicit Runge-Kutta meth-
ods. The semi-implicit method leads to block pentago-
nal diagonal systems of implicit equations that can be
solved efficiently. The strict limitation on tune steps
due to fine grids in the wall-normal direction is removed
by semi-implicit method so that the time steps only
depend on the grid spacing in the streamwise direction
and accuracy requirement. The new semi-implicit al-
gorithm is tested in computing the Navier-Stokes equa-
tions for unsteady hypersonic flows over an oscillating
blunt body.

Introduction

Time accurate simulation of unsteady hypersonic
flow with relative body motion is one of the great
challenges to computational fluid dynamics. Re-
cently, unstructured grid approach has been applied
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to solve the Euler equations'1' 2 '3 ' 4> 5' 6' and Navier-
Stokes equations17' 8' 9'10' "•12'13]. The advantage of
unstructured grid methods is that they are flexible
in handling complex geometries and in implement-
ing solution adaptation. The disadvantage is that
they are less efficient for viscous flow computations
in the boundary layers where stretched girds with ex-
tremely small wall-normal grid sizes are required in
order to capture unsteady flow scales. Since struc-
tured grids are much more efficient for such viscous flow
computations, structured/unstructured hybrid grid ap-
proach has been used for numerical simulation of vis-
cous flows'14'15> i6' in which the boundary layers are
solved using structured grids and the outer flow fields
are solved using unstructured grids. For the compu-
tations of such unsteady viscous hypersonic flows with
moving grids, as well as other transient hypersonic flow
simulation with fixed grids, efficient and high-order ac-
curate solvers are required.

For time-accurate hypersonic inviscid flow calcula-
tions, explicit methods are often used to solved the Eu-
ler equations because the tune step sizes limited by the
temporal accuracy requirements for unsteady flows are
often comparable to the numerical stability conditions.
For unsteady viscous flow calculations, however, the
extremely small grid sizes in the boundary layers near
the wall is used, the time steps required by the stability
condition are much smaller than that needed by accu-
racy consideration. Consequently, the explicit compu-
tations of unsteady viscous flows are often not efficient
enough for practical applications. In order to remove
the severe stability restriction, global implicit methods
have been used to treat the whole flow fields implicitly
by approximate factorization methods or by iterative
methods. For unsteady viscous flow computations, the
full implicit treatment of global implicit methods is of-
ten unnecessary and inefficient because the time step
is limited by the unsteady flow time scales and the
streamwise terms in the equations can be treated by
more efficient explicit methods.

In this paper, we present a high-order and effi-
cient semi-implicit method to compute unsteady vis-
cous hypersonic flows with fixed or moving structured
grids. The new method is motivated by our long-



term research project in direct numerical simulation
of laminar-turbulent transition of hypersonic boundary
layers'17' over fixed or maneuvering hypersonic vehicles.
The Navier-Stokes equations for unsteady flows are dis-
cretized in space using a second-order TVD scheme,
which can be replaced by other high-order schemes if
necessary. The spatial discretization of the governing
equations is separated into stiff terms involving deriva-
tives along the wall-normal direction and the non-stiff
terms of the rest of the equations. The split equa-
tions are advanced in time using second and third-order
semi-implicit Runge-Kutta schemes recently derived by
Zhong and Shen'18'19'. The semi-implicit schemes lead
to block pentagonal diagonal systems of implicit equa-
tions that can be solved efficiently. Meanwhile, the re-
striction on the time step is only limited by the stream-
wise grid sizes and by accuracy conditions.

Governing Equations

The two-dimensional Navier-Stokes equations in the
integral form on moving meshes can be written as

^ f f UdV + ( E-dS = 0ot J Jv Jav

where dS is surface outward pointing vector,

dS = (nxi + nyj)dS

(1)

(2)

U is the vector of the conservative variables, and E is
the flux vector,

P
pu
pv
pe

= (F-Fv)i+(G-Gv)j

(3)

(4)

where

F =
p(u-xt)

pu(u — xt) +p
pv (u - xt)

(pe + p) (u - xt) + pxt

(5)

F,=

0
Txx
Txy

UTXX + VTxy -

Gv = lyx

Tyy
UTyx + VTvy -

where p is the fluid density, u and v are the x and y
components of the fluid velocity. xt and yt are the grid
speeds in the x and y directions, respectively, e is the
total energy and p is the pressure.

• -
p = pRT

(8)

(9)

where R is the univers gas constant and 7 is specific
heat ratio.

The viscous stress r and heating rate q are

TVV = «/

_
3 dx dy>
2 dv du

>xy -

Or =

9, =

lyx

0T

(10)

(11)

(12)

(13)

(14)

where the viscosity coefficient // is computed according
to the Sutherland's law, and heat conductivity k is de-
termined by assuming a constant Prandtl number, the
value of which is set to be 0.72 for air.

The boundary conditions for computing viscous hy-
personic flows of moving blunt bodies are as follows.
The outer boundary conditions are fixed as the free-
stream conditions. No physical boundary conditions
are required at the supersonic exit boundaries where
the flow variables are determined by the upstream
conditions. On the solid wall, no-slip and isothermal
boundary conditions are used.

Numerical Method

(7)

G =

p(v- yt)
pu(v- yt)

pv(v-yt)+p
+ p)(v-yt)+pyt

(6)

In the current semi-implicit methods, the spatial dis-
cretization of the Navier-Stokes equations is first addi-
tively split into the stiff viscous terms involving spatial
derivatives normal to the wall and the rest of the flux



terms, which leads to a system of ordinary differential
equations in the form of

mmmod(a; «) = + sign(y)
2

^
hl " ^ '

u'=f(*,u) (15) A = TAT"1 (22)

where u represents all of the unknown discretized
flow variables in the flow field, f ( t , u ) represents the
non-stiff terms, and g(i, u) represents the stiff terms.
The split ordinary differential equations (15) is then
integrated in time using semi-implicit Runge-Kutta
schemes derived by Zhong and Shen'18'19', where f is
treated by explicit Runge-Kutta methods and g is si-
multaneously treated by implicit Runge-Kutta meth-
ods. The resulting semi-implicit methods for time-
accurate computations of the Navier-Stokes equations
are high-order accurate in both space and time, and
they are much more efficient than the spatially full im-
plicit schemes. The details of the method is presented
in the following sections.

Spatial Discretization and Splitting

The governing equations are discretized in space us-
ing a cell-centered finite-volume method. For a cell
denoted by ij, Eq.(l) is discretized as

dt

where Vij is the cell volum and index i ± 1/2 and
j ± 1/2 represent cell boundaries. In Eq. (16), the
inviscid fluxes F and G in E term are approximated
by a second-order TVD scheme, i.e.,

J [nxF(UR) + nyG(UR}]
2i

l-(nxF(UL)+nyG(UL)}

if KAF + i^Aolf ~1(UR - UL)
&

(17)

(18)

where

UR =

where |A| = is evaiuated using Roe
averages'20' at the surface. Meanwhile, the viscous flux
parts in E term are approximated by central difference
schemes.

The right hand side of Eq. (16) is additively split
into relatively non-stiff term /# and stiff term gij as
follows

dt

where

= fa + 9a

-w^-

(23)

(24)

- (25)

where Evi is the part of the viscous flux terms on the
j ±1/2 surfaces involving tangential derivatives only,
and EV2 is the part of the viscous flux terms on the
j ± 1/2 surfaces involving normal derivatives, i.e.,

(26)

and

(27)

where

/4 . \ du
= A * l 3?x«x+^yWy ) ——

= Ui+1 - U, (20)

du
——

dv (28)
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du

,0-n(31)

= A
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2 dw

4C) scheme is'19'

[I - tonJ(tn, Un)} ki = h{f (tn, Un) + g(tn, [/")}
[I - ha23(tn + s2ft, Un + c2iki)] k2 = h{f (tn + r2h,

Un + 62iki) + g(t" + s2h, Un + c2iki)}
[I — ha33(tn + s3h, Un + csiki + C32k2)] k3 = h

{f(tn + r3h, Un + fcsiki + 632k2) ,o7N
+g(tn + s3h, Un + c3ik! + c32k2)} <• '

[I — Ao4J(i" + s4/i, Un + C4iki + c42k2 + c42ks)] k4
= h{t(tn + nh, Un + 64iki + 642k2 -l- 643k3)
+g(i" + 54/1, Un + C4iki + C42k2

jjn+l _ jjn

( j. 4 "\ 9V
+ A4 I "Hxnx ~T~ ~zTlyny I "J—

\ 6 J Of]

Tr,4 = wr,2 + vr^a + k (r]xnx +

(32) where

Semi-Implicit RK Schemes

Applying the splitting of Eq. (23) to every grid cell
of the flow field results in Eq. ( 15), which can be inte-
grated in time using the second and third-order semi-
implicit Runge-Kutta schemes'18' 19^, where f is treated
by explicit Runge-Kutta methods and g is simultane-
ously treated by implicit Runge-Kutta methods.

The second-order semi-implicit Runge-Kutta
(ASIRK-2C) scheme is

dT
^ <33> Wi = 0.125

w4 = 0.1
632 = 0.671880
643 = 0.9
o3 = 0.115586

w2 = 0.25
621 = 0.324692
641 = -0-2
01 = 0.283537
o4 = 0.104866

ws = 0.525
631 = 0.0877902
&42 = -0.5
o2 = 0.103555
C21 = 0.11

c3i = 0.0743829 c32 = 0.605617 c4i = 0.0759479
c42 = -0.586539 c43 = 0.340591

where r, and s$ are given by Si = r* = £)*•" * &«j
parameters with longer significant digits can be found
in [19].

Jacobians for Semi-Implicit RK Schemes

In order to apply the semi-implicit Runge-Kutta
schemes to the Navier-Stokes equations, Jacobian ma-
trices are needed in the equations for k|. In order
to maintain second and third-order temporal accuracy,
the Jacobians need to be evaluated without any ap-
proximation. Especially, the derivative of the viscosity
coefficient with respective to temperature needs to be
included in the Jacobians. The details of Jacobian ma-

. trices, including the contributions from both inviscid
U +&aiki)+g(t +«3ft,U +caiki)J(35) fluxes aoid the viscous fluxes, are presented below.

[I - tonJ(t", U")] kx = h [f(tn,Un) + g(tn,Un)] (34)

[I - Ao2J(*n + s2h, U" + caiki)] k2 = h [f(tn + r2h,

U"+1=U"+u;1k1+w2k2

where

(36)

Inviscid Flux Jacobian

The Jacobian for inviscid flux is

= \ [M(UR) - t|A|f-1] 6UR

+ ^ [M(UL) + t|A|f-1] 5UL (38)

b2l =1 C21 = ̂ where

The third-order semi-implicit Runge-Kutta (ASIRK- su R _



-SUf) (39) where

6UL =

M(U") = „ , + „ ,

, -SV,-,) (40)

(41)
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u
v
T

9V_
dU

0 0

8 J
0 0

0
0
0

dT

UL
(42)

A —J-X-y ——

where a^, k = 1,2,3,4 axe 4 x 4 diagonal matrices,

Bv =

when (T-
/ = 1,2, 3,4

n = 1
if |T-
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• an = 0

if T-

(43)
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0 ^02
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0 0
0 —i
0 -^
0 642

043 044

0 0
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and

when (T-
f = 1,2, 3,4

• (T~ < 0,

f an = 0
I a2; = 0

when (T-1.,- A,-[/)/ • (T-1.,- A,,-_i J7)j > 0

' osi = 1

31 =0

• Q-VL = 1

when (T-1,- Aj Efy '

{;
-1, Aj_i ^7); < 0
= 0
= 0

(45)

(46)

(47)

Viscous Flux Jacobian

The Jacobian for viscous flux in the implicit parts is

5(EV2) = Av5Vj+1+BvSVj

/ 1^3 y yj

( 2 \
<^23 — /^ 1 ~"^r)ynx + %1« 1

/ 2 "\

a33 = »(r,xnx + -r,yny}\ X 4 y yj
1 l

ATJ 2

043 = -r— v(d23 + 033) + -T,j3

1. . I d / ^ t

A IdT dk^
9 ^^Ar? 2 9?7 dT1

1 1
ATJ 2 ^
1 . . 1

»43 = —7—V(023 +033) + -r^3

1 1 d//

A IdT dk

Implicit Jacobian Matrix

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(44) The Jacobian matrix for the implicit parts of (E



can be obtained from Eqs. (38) and (44):

(58)

where

the figure, show that the semi-implicit TVD scheme
can catch the bow shock front without oscillation. The
CFL number used hi calculation is only limited by the
grid spacing in the tangential direction of the wall,
though highly stretched grids are used normal to the
wall to resolve the boundary layers. Figure 2 is the
comparison of bow shock shape with Hayes' data'22' at
Mach number 5. Also the two results agree well with
each other.

A, = i [M(UL) + f IAIT-1] (-\a^\ (59) Unsteady Solutions of a Moving Blunt Wedge

j r - • > ~ _ 1 / ' 1 < \ e new semi-implicit scheme for the Navier-Stokes
= £ [M(U ) - T|A|T~ J ( -0:2 1 equations is then applied to unsteady hypersonic flow

over an oscillating blunt leading edge as shown in Fig._. _ VY^/A CVJ.JL VSOVsAAJLCVUU££* UJ.UUU l̂ sar\£XJ.£E^ '

+ - [M(UL) + TIAJT"1] I + - (0:4 - 0:3) 3. The freestream conditions are
L I

-Bv— (60) MOO =8.03 POO =985 Pa
, r , r i i ^ = 800^ rwall = iooo

Cj - ^ M(UR) - f |A|f-1 I + =• (QI - oa) ^e = 2.573 x 105 H« = 0.0254 m
2 L J L 2 J

- [M(UL) + TIAIT"1] ( -0:3 } - Av^ The blunt body oscillates around a fixed point accord-
^ ' ing to the following function:

(61)

(62) 6(t) = 6max sin(wt) (63)

The final global Jacobian matrix for the implicit terms
in the semi-implicit Runge-Kuta schemes is a block
pentagonal diagonal matrix involving terms along the j
grid direction only. The block pentagonal diagonal sys-
tem of equations can be solved efficiently by numerical
methods.

Numerical Results

Code Validation

The semi-implicit Runge-Kutta method is first
tested by a steady two-dimensional hypersonic flow
over a circular cylinder at Mach 6. The flows condi-
tions are Re^, = 2.50 x 105, POO = 486pa, T&, = 280 K,
Twall = 300 K, 7 = 1.4, and cylinder radius is 0.005
meters. The solutions are obtained by marching un-
steady Navier-Stokes equations to steady states using
the second-order semi-implicit Runge-Kutta scheme.
The numerical calculations are performed in a set of
42 x 142 grids.

Figure 1 shows the comparison of bow shock shape
with experimental results by Kirn'21'. The results show
that the bow shock captured by the second-order semi-
implicit TVD scheme agrees well with the experimental
data. The pressure contours, which are also shown in

where 6max = 12° and w = I-K x W3s~1. The corre-
sponding reduced frequency is k = ^°- — 0.025.

Figure 4 shows the structured 42 x 122 computational
grids used in numerical calculations. For unsteady cal-
culations, the dynamic grids oscillate with the body as
a rigd-body motion. At each tune step, the grid speed
and its position are determined by the motion of the
blunt body. The unsteady computations start from the
steady state solution at the initial angle 9(t = 0) = 0°.

Figure 5 shows the distribution of wall pressure along
the body surface at different moments of the blunt-
wedge oscillation. The surface distribution is no longer
symmetric about the stagnation line because of the
blunt body oscillations. From t = 2.50 x 10~4 s to
t — 7.48 x 10~4 s, the wall pressure maintains similar
shapes but the curves move from left to right. The fig-
ure also shows that the highest value of wall pressure is
in the regions near the stagnation line. Figure 6 shows
the surface heat transfer distribution at the same time
stages as that in Fig. 5. Compared with the surface
pressure, the surface heating rates are much less af-
fected by the body oscillations. Figure 7 is the viscous
stress distributions along the wall. The jump of its
value near the shoulder is due to the discontinuous of
the surface curvature.

Figure 8 shows the time history of wall pressure



at the stagnation point during the body oscillations.
These results show that the oscillation of the stagna-
tion pressure is non-symmetric due to nonlinear effects
although the motion of the body has a symmetric line
at 9 = 0. The time histories of heat transfer and vis-
cous stress at the stagnation point are given in Fig. 9.
Again, the non-symmetric characters are inherent for
the viscous unsteady flow fields.

Figures 10-12 are the velocity vectors at three time
stages. They show that the location of bow shock front
changed as the blunt body moving.

Figures 13-22 are pressure contours at ten stages
about a oscillation cycle. The flowfield is obviously
non-symmetric because the unsteady oscillation.

The magnitude of the maximum time step used in
numerical calculation is limited by the stability condi-
tion related to the grid size in the streamwise direc-
tion. The stiffness of fine grids in the direction across
the boundary layers is overcome by the semi-implicit
schemes. The computations show that the new schemes
are robust with large time steps.

Conclusions

An efficient semi-implicit Runge-Kutta method has
been presented for computing unsteady flows around
fixed or moving bodies using the unsteady Navier-
Stokes equations on structured dynamic grids. The
method uses semi-implicit treatment to overcome stiff-
ness in viscous wall-normal derivative terms, while the
streamwise terms are computed by explicit methods
for efficient unsteady flow calculations. The method
has been tested in computations for viscous hypersonic
flows over steady and oscillating blunt bodies. Numer-
ical tests show that the semi-implicit method is effi-
cient for solving the Navier-Stokes equations in highly
stretched grids across boundary layers. The CFL num-
bers in the semi-implicit computations are only limited
by the streamwise grid spacing and the accuracy re-
quirement for unsteady flow computations.
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Experimental Results

Figure 1: Comparison of the bow shock shape with
experimental data by Kim (1956) for Mach 6 flow over
a cylinder.



• DatafromHayes

Figure 2: Comparison of the bow shock shape with
Hayes' data for Mach 5 flow over a cylinder.

Figure 4: Computational grids in hypersonic flow over
the oscillating body.
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Figure 5: Distributions of pressure along the body sur-
face at three moments during the oscillations.

Figure 3: Schematics of Mach 8.03 flow over an oscil-
lating blunt leading edge at three different moments in
time.

Figure 6: Distributions of surface heating rate along
the body surface at three moments during the oscilla-
tions.



Figure 7: Distributions of viscous stress along the body
surface at three moments during the oscillations.
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Figure 8: Time history of the pressure at the stagnation
point.

Figure 10: The velocity vectors at three successive
niomeats of the time during the body oscillations,
t=2.50xlO~4.
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Figure 11: The velocity vectors at three successive
moments of the time during the body oscillations,

Figure 9: Time history of the heat transfer rate and t=4.99xlCr4.
viscous stress at the stagnation point.
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t=7.48x10-4
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Figure 12: The velocity vectors at three successive
moments of the time during the body oscillations,
t=7.48xl(r4.

Figure 14: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.
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t=2.50x1(T

Figure 13: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.

Figure 15: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.
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1=6.22x10"

Figure 16: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.

Figure 18: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.
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t=7.48x1CTt

Figure 17: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.

Figure 19: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.
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1=8.75x10"

Figure 20: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.
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t=1.25x1Q-3

Figure 22: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.

t=9.98x1<T

Figure 21: The instantaneous pressure contours at ten
successive moments of the time during the body oscil-
lations.
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