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SEMI-IMPLICIT RUNGE-KUTTA SCHEMES FOR STIFF MULTI-DIMENSIONAL
REACTING FLOWS

Jack Jai-ick Yoh*and Xiaolin Zhongt
University of California, Los Angeles, California 90095

Abstract

Reacting flow calculations are stiff for time-stepping.
Recently, Zhong derived three sets of semi-implicit
Runge-Kutta(SIRK) methods for split ordinary differ-
ential equations in the form of u' = /(«) 4- g(u), where
the nonstiff term / is treated explicitly while the stiff
term g is simultaneously treated implicitly. The pur-
pose of this work is twofold: first, to simulate multi-
dimensional detonation waves using the high-order
Rosenbrock semi-implicit Runge-Kutta time-stepping
scheme(SIRK-3C); secondly to quantitatively compare
the performance of SIRK with the second-order time-
splitting schemes in dealing with the hyperbolic con-
servation laws with stiff relaxation terms. In the simu-
lation of two-dimensional detonations, a full set of ele-
mentary hydrogen-oxygen kinetics with nine species are
linear-implicitly treated while the explicit discretiza-
tion of the basic advection equations are achieved by
the third-order ENO schemes. Several model problems
of hyperbolic systems with stiff relaxation are consid-
ered in the comparison of the Time-Splitting and the
SIRK-3C scheme. A set of low-storage SIRK(LSSIRK)
schemes is derived and tested to be high-order accurate
and strongly A-stable. The results show that high-order
SIRK time-stepping methods are suitable for stiff reac-
tive flow simulations like the multi-dimensional detona-
tions.

INTRODUCTION

In the reactive flow field solutions and the combus-
tion related problems, the existence of several non-
equilibrium states impose additional difficulties in the
solutions of the reactive Euler equations with stiff relax-
ation terms. Since the smallest time scale is introduced
from the chemical reaction kinetics, the second-order
time-splitting method of Strang^ allows an indepen-
dent calculation of the stiff ODE for the source term
via implicit methods in one step, and an explicit high-
order convective calculation in the following time steps.
By " splitting" the main source of stiffness from the ba-
sic hyperbolic conservation laws, it can accomplish a
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robust and easy-to-implement computation of reactive
flow of current interests.

Despite the second-order in time accuracy and the
robustness of these methods, there are two main dif-
ficulties with the stiffness which have been minimally
handled. The spurious solutions are one of the often ob-
served phenomena, which are stable and free of oscilla-
tions, and yet may be completely incorrect.'-2' Some type
of resolution technique is needed to treat this known
difficulties.13114115^6'!7] The degrading of the second-order
time accuracy to the first-order is another and quite re-
cent observation when there exist solutions with many
small-scaled structures of high-degree of complication.
Jin® has modified the Strang splitting into the second-
order time-splitting methods which preserve its high-
order accuracy when the considered solutions are com-
plicated.

New third-order semi-implicit Rosenbrock type
Runge-Kutta scheme, based on the original version
of Zhong'-9-"10-', is computationally efficient with the
linearized source term integration, thus requiring no
iterations during the implicit treatment of the stiff
source term. Third-order ENO schemes discretize the
convective fluxes such that both implicit and explicit
terms are treated at each of the three Runge-Kutta
stages. This high-order Runge-Kutta scheme(SIRK-3C)
still possesses the typical under-resolved characteristics
of unphysical spurious numerical results of the Time-
Splitting method. However the reduction to lower or-
der if the small relaxation time is not temporally well-
resolved, is successfully removed.

Multi-dimensional Detonations

Detonation waves are multi-dimensional and unsta-
ble phenomenon in nature as demonstrated by the early
experiments of Urtiew and Oppenheinv11-'. Existence of
the triple points'^, consisting of an incident shock, a
reflecting shock and a Mach stem, is the main charac-
teristic of the reacting region behind the propagating
shock front, and these detaching triple points from the
leading front further contributes to the rolling up of
vortices of opposite strength. One distinctive feature
of the instability process observed in experiments is the
formation of regular cell structures as triple points col-
lide as they come together in the incident shock and
move away from each other in the newly formed Mach
stem. Figure[13] depicts this process of triple point col-
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lision and the trace of these points will leave a regular
cell-structure pattern behind the propagation path.

Stiff Conservation Laws

The complexity of the nonequilibrium gas dynamics
is a major concern in modeling of the flow field in cer-
tain regimes of hypersonic aerodynamics and combus-
tion problems, where several nonequilibrium states ex-
ist. Many researchers over the years have developed
different approaches to deal with these stiff-coupled sys-
tem of equations and suggested many well-known stable
high order methods.t7^13^2]. Restricting our attention to
the inviscid flow, we basically have the Euler equations,
coupled with source terms, representing the chemistry.
In its simplest form, the linear advection model equa-
tion of Yee is stated as follows:

«t («), = S(n)

with

(1)

(2)

Two stable equilibria at u = 1 and 0 and unstable
equilibrium point at u — | exist. For large n and ar-
bitrary initial data, the solution rapidly approaches the
upper equilibrium if U(XQ, 0) > \ and the lower equilib-
rium at u(x,t) — 0 if u(x0,Q) < |.

LeVeque and Yee'2-' have considered this model prob-
lem and reported the main difficulty with the stiff sys-
tem; regardless of the implicit treatment of the source
term and high-order treatment of the convective term
via MacCormack type predictor-corrector methods with
limiter, unphysical shock speed is observed. Similar be-
havior was reported by Colella, Majda, and Roytburd'7^
on a model combustion problem. It is known that
this unphysical phenomena is due to the introduction
of nonequilibrium values through numerical dissipation
in the advection step. In our study, we have "nearly"
removed this "turning-on" of the points within the
smeared discontinuity, thus causing a wrong propagat-
ing speed, by using the Harten's subcell resolution tech-
nique similar to Ref.[3].

High-Order Accurate Simulations

The goal of the present work is to perform high-
order accurate reacting flow calculations and to carry
out a detailed analysis on the time-stepping methods
by means of considering combustion model problems.
For the fast ignition type flow as the multi-dimensional
detonation problems, high order numerical scheme is
desirable, in order to capture small-scale shock waves
and combustion fronts. In addition, a low-storage
version of the current high-order semi-implicit Runge-
Kutta(LSSIRK) is derived and briefly discussed in the
next section.

The reflected shock tube experiments in the strong
ignition regime'-14^15-' and the wedge induced oblique

detonation with extent to its structures and induction
zone'16-! ̂  are first replicated numerically using a de-
tailed hydrogen-air-argon combustion mechanism, be-
fore the simulated results of the transverse detonation
waves with regular cell structures are presented. Follow-
ing these one and two dimensional validations, a model
combustion system of Yee^ is used in the analysis of the
two time-stepping methods, namely the Strang Time-
Splitting and the SIRK-3C schemes. Another prototypi-
cal model problem of hyperbolic conservation laws with
stiff relaxation terms by Chen, et al.'-18-' is considered
to show the noticeable improvements in the solutions
with complicated structures when the third-order time-
stepping is used instead of the Strang-Splitting or the
Second-order Splitting by Jin.[8][191

MATHEMATICAL FORMULATION

Governing Equations

The three-dimensional governing equations for invis-
cid compressible reacting flows in Cartesian coordinates
with the nonequilibrium chemistry and vibrational en-
ergy mode are

^ = W (3)

where

U =

8t

Pi

e
ev

(4)

The equation of state for pressure is given by the
Dalton's law for a mixture of thermally perfect gases,

(6)

where R, is the species specific gas constant. The total
energy is

• P^kUk (7)
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where A? is the heats of formation, and cvt, the specific
heat at constant volume, is equal to 3Rj/2 and 5Ri/1 for
monatomic and diatomic, and 6/Jj/2 for other atomic
species. To account for the vibrational nonequilibrium,
the thermal state of the gas is described by two sepa-
rate and independent temperatures. One temperature
T represents the translational and rotational modes of
molecular energy while the other temperature Tv rep-
resents the energy stored in the vibrational degrees of
freedom of the molecules. This approach requires a sep-
arate energy equation for vibrational energy and allows
an harmonic oscillator model to be used to represent the
energy in the vibrational modes. It is assumed that an-
harmonic effects and the excitation of electronic states
are not important for the flow of interest.

The total vibrational energy is defined as

ev = (8)

All of the nm species are considered to be harmonic
oscillators at a single vibrational temperature Tv. evj
for each diatomic molecule is expressed by

where #„; is the characteristic vibrational temperature
for the single mode of vibration. Triatomic molecule,
such as HzO, has three vibrational modes so its vibra-
tional energy is written in the harmonic approximation
as

- € / * r * - ~ * \ H , !'j' « • 0 , i'i' -I • Qvi r±'v -, j }
g 1* —— J_ C 2* -— _[_ Q 3' — _L

(10)
where there is a characteristic temperature for each of
the three modes. Hydrogen peroxide, H^Oi, has six
vibrational modes, so its vibrational energy is written
with six terms. With the vibrational energies defined in
this manner, Tv can be found iteratively.

Chemical Source Terms

All of the hydrogen-air combustion in this report oc-
cur below their maximum temperature and pressure of
3500° Kelvin and 27 atmospheres respectively. For this
range, the updated GRI 1.2 Mechanism'20-' is proposed
by numerous researchers and tested to have similar rate
coefficients as the following three well known mecha-
nisms. Moretti's 7 species (#2,0%, OH, H20, H, O and
NZ inert) 8 reactions model'21-' which has been used
and modified by later researchers like Cohen and West-
berg, I22!!23]!24] is well established in the literatures and
favored in the combustion work where the final equi-
librium state is of prime importance. Maas-Warnatz's
9 species '25-' 43 reactions add two additional species,
namely HOz and H^O^. Addition of reactions involv-
ing these species is significant in the rate of relaxation

of the state, including the production and consump-
tion of species, temperature, and density. Initial test-
ing of this mechanism revealed that the final state of the
hydrogen-air combustion resulted in a close proximity
to the results of 7-species model as addressed earlier.
The last considered model by Oran's 9 species 48-step
mechanism'15-' is detailed with out the inclusion of NZ
dissociation and herein will be referred to as the "de-
tailed model".

Of the nearly 50 reactions, the following two are the
most influential in the species formation and destruction
for the reasons discussed below. First and the most
significant branching reaction given by

(H)

is the governing reaction for which radicals are created.
Second type of reaction involves three-body collisions.
A sample reaction is quoted from Oran's'-15-' as below.

H + OH + M ̂  H2O + M

which yields a reaction rate of

(12)

(13)

Here M refers to all possible third-body collision part-
ners and hi are the third-body efficiency factors for the
given reaction.

Vibrational Source Term

The source terms for the vibrational equations are

ws = QT-V + QV-D (14)

where QT-V is the translation-vibration coupling and
QV-D is the vibration-dissociation coupling, following
a a Landau-Teller model.'26-' Although vibrational re-
laxation effects are small for combustion in compress-
ing flows '27^ such that the gas is essentially in thermal
equilibrium, i.e. Tv = T, vibrational source term is
considered through out the current research.

NUMERICAL FORMULATION

The governing equation(Eqn.[3]) is solved by the
method of lines using a finite difference upwind scheme
developed by Shu and Osher^28' to discretize the equa-
tion in space. The inviscid terms are evaluated by either
ENO or TVD schemes with up to third order accuracy.
As for the temporal discretization, a set of 3rd order
semi-implicit Runge-Kutta(SIRK-3) schemes with three
different coefficients are used in the current work. A
detailed description of a spatial discretization can be
found in the references '9J'10J and a brief description of
the semi-implicit Runge-Kutta with derived set of co-
efficients will be summarized below. The methods are
both computationally efficient and third-order accurate
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for the purpose of current two dimensional detonation
simulations in this report.

There are three versions of SIRK. For SIRK-3A
method,

un+1 = .11"

k, = Af (*"

(15)

(16)

Low-Storage SIRK Schemes

Work is on the progress to derive a set of high-
order semi-implicit Runge-Kutta schemes which require
no more than 2N locations. Unlike the fully implicit
version of SIRK-3A which has 3N storage require-
ment, a new semi-implicit low-storage Runge-Kutta
scheme(LSSIRK-3A) requires only evaluations of q^ and
Xj at each of the general r-stage and takes the following
form:

+/ig(u" + Y, cykj + ojki) (17)
.7=1

(.' = 1,2,3) (18)

where h is the time step ,and f and g are the results of
spatial discretization of the explicit and implicit parts,
respectively. All other parameters which are determined
by accuracy and stability requirements are summarized
in Tablefl]. The computations are relatively inefficient,
since nonlinear solvers, such as the Newton's method,
are required to solve such nonlinear equations.

Method B and C, however require no iteration [see
Zhong *-9'} , and they are semi-implicit extension of the
Rosenbrock Runge-Kutta method, ̂

un+1=u"

i-l

(19)

h(f (u» g(u" cyk,)) (20)

('•=1,2,3)

Here J = ^ is the Jacobian matrix of the stiff term
,and dij = 0 and c^ for method B and C respectively.
A single LU decomposition is required for these method.

Parameters
01
«2
03
C21
C31
C32

SIRK-3A
.485561
.951130
.189208
.306727

.45
-.263111

SIRK-3B
1.40316
.322295
.315342
1.56056

1/2
-.696345

SIRK-3C
.797097
.591381
.134705
1.05893

1/2
-.375939

Table 1: Third-Order SIRK Methods Parameters

w1 = 1/8 u>2 = 1/8
W3 = 3/4 &2i = 8/7

631 = 71/252 632 = 7/36

-i + -i +
(21)

x,- =

with ai = 0. A similar version of explicit Runge-Kutta
schemes was derived by Williamson ' ' and IN stor-
age version of implicit Runge-Kutta was studied by En-
gquist and Sjogreen'5-'. However, both of these earlier
derivations are not suitable for practical reactive flow
calculations due to their explicit and improper treat-
ment of the stiff source term. In the current work,
proper implicit treatment of the source term g is en-
forced by searching for strictly positive implicit coef-
ficients, Cj thus eliminating any unphysical variables
which might be introduced from the negative or zero
coefficients during the intermediate stages. "

Once 10 undetermined coefficients are written in
terms of the original twelve SIRK-3A parameters, the
eight accuracy conditions and one strong A-stability
condition denned in Ref.[10] are used in the optimal
search of the new parameters. Of the obtained four
possible roots of the eight non-linear equations, addi-
tional determination criteria of a strong A-stability and
large stability region defined by Cj > 0 further narrow
down the parameter selections and the following set of
new coefficients for the LSSIRK-3A is obtained:

01 = 5
— -̂ - <"c —

7R ^ ~

143

600

-» is = it

C2 = -

= ——— g 03 = - J^g

59
135

^ - 5283C3 — 25600

Then the expressions for the third-order method be-
come,

C2q2)]

qi = h[f(xo) + g(x0 •

q2 = «2qi + h[f(xi) + g(xi
x2 = xi + 62q2
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13 = «3q2 + h[f (x2) + g(x2 + C3q2 + C3q3)]
x3 = x2+63q3 (22)

These obtained coefficients have been tested to hold
their third-order accuracy. Moreover, complete discus-
sions of all three low-storage versions of semi-implicit
Runge-Kutta schemes of up to four stages with exten-
sion to the non-autonomous version'32-' will be reported
in the forthcoming paper.

RESULTS with DETAILED CHEMISTRY

The new third order semi-implicit Runge-Kutta
code(SIRK-3C) was tested with one-dimensional re-
flected reacting shock tube experiment before it was ap-
plied to two-dimensional detonation cases. In the first
case of strong ignition shock reflection, H? — 02 — Ar
mixture is used. Following Gambler'15-! and Li'17', we
then conducted two dimensional wedge induced oblique
detonation simulations with N% as an inert gas instead
of Ar.

Reflected Shock Tube

Detailed ignition processes in hydrogen-oxygen-argon
mixtures behind a shock wave reflected from a rigid wall
are simulated, based on the shock tube experiments per-
formed by Cohen and Larsen'14^ The corresponding nu-
merical simulation is carried out by Oran, et al.'15^ who
use the Flux Corrected Transport(FCT) method along
with an adaptive grid in their solutions.

We used the detailed 48-step chemical reaction with 9
species as discussed earlier, which is the identical com-
bustion mechanism used in the simulation of Oran, et
al. t15-' Figure[l] represents the schematic of the shock
tube, where incident shock is reflected and then fol-
lowed by a reacting shock. The initial mixture of the
gases is 2J72 + 102 + 7Ar. Only a slight difference in
the initial conditions to the experiment is observed and
summarized in Table[2].

T
P

UFluid
UShock

Undisturbed
298.00K

6687.45Pa

Incident
621.0°K

36670.6Pa
465.4m/s
756.1m/s

Reflected
1036°K

131722.5Pa

450m/s

Table 2: Parameters for the Strong Ignition Simulation

A coarse grid of 100 cells with uniform spacing(Aa; =
0.12cm)is used, and the results agree well with both
finer grid case(Aa; = 0.035cm) of Oran, et al. and
experiment of Cohen. Figure[2] shows a combined x-
t plot of all the cases considered here. Relative to
the point at which the transmitted detonation forms
(approximately at t = 260//sec), two additional snap

shots are taken such that before and after behav-
ior of reflected shock-reacting shock and transmitted
detonation-contact discontinuity structure are consid-
ered. Figure[3] and Figure[4] show a good agreement
with the reported results'15-' and in particular reflected
expansion wave is reasonably well observed even at our
coarse grid result as in Figure [4].

Before moving on to the multi-dimensional simula-
tion, we applied different sets of rate coefficients sug-
gested by Moretti and Maas-Warnatz and found that
similar structures are obtained but clearly different igni-
tion delay was observed. It is believed that the discrep-
ancy in the magnitudes of the main branching reaction
rate coefficients(see Eqn.fll]) causes this ignition time
difference and thus for this simulation, choice of Oran's
full mechanism was a crucial factor in achieving such
well-agreeing results.

Wedge-Induced Detonation

Computational domain used in the two-dimensional
wedge detonation problem is sketched in Figure[5]. So,
for a simulation of supersonic premixed fuel hitting the
wedge at an angle 0, incoming flow at the left boundary
is at this angle to the domain such that a uniform grid
can be used.

Standing Oblique Detonation with Fast Ignition

The revisited test case of the two dimensional
oblique detonation problem is Cambier, Adelman and
Menees.'16-' The free stream conditions are as in
Table[3]. The dimensions of the system is 28cm by

Case Poo,atm
3.8 840 0.0600

Table 3: Freestream Conditions for H2 : O2 : N2/0.201 :
0.168 : 0.631 by Mass

10cm and 50 and 75 points are used in the x and
y direction. The mixture of 60% stoichiometry and
chosen initial conditions can ignite the fuel instanta-
neously and thus coupled shock and detonation are
observed on a wedge of 31° degrees.(see Figure[6])
The ignition temperature of the mixture is around
1000°Kelvin, so that high freestream temperature drives
the shock-detonation coupling at a supersonic speed of
3.8. Figure[7] and Figure[8] show temperature and pres-
sure distribution along the cut at grid row 32. Slightly
different cut was chosen in Cambier's results'16-', but
reasonably identical profiles were obtained in our simu-
lation. Discrepancy in the rate of relaxation of temper-
ature is believed to come from the omission of three el-
ementary reaction steps from the detailed model by the
authors Cambier, Adelman and Menees. A major rea-
son for their removal of several steps was due to errors
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during the process of manuscripting the compiled reac-
tions reported in the reference.'15-' For our detonation
code, corrected and accurate version of this mechanism
is implemented with several personal acknowledgments
from authors.

Standing Oblique Detonation with Induction

A different set of initial conditions to that of the pre-
vious shock induced detonation simulation is listed in
Table[4] and it corresponds to the case reported in Li,
Kailasanath, and Oran.'17'

Wedge angle Afa POO ,atm
23° 8.0 300°K 1.0

Table 4: Freestream Conditions

The size of the computational domain is 10.0cm x 3.5cm
and the numerical resolution is Ax = Ay = 0.05cm such
that 200 and 70 points are used in x and y directions
respectively. All three hydrogen-air mechanisms were
used to simulate this case and with its most detailed
nature, Oran's full mechanism results are included in
this report.

Foi the given conditions, non-reacting post shock
state has been analyzed and compare well with the ob-
tained results as in Table[5]. Figure [9] and Figure[10]

Temperature
Pressure

Mach Number

Non-reacting aftershock state
1300° Kelvin

1900kPa
3.5

Table 5: Behind Non-reacting Shock Conditions

are the reacting cases with initial species molar concen-
tration of HI : 02 : N2 / 2 : 1 : 3.76. While only a small
induction zone is obtained in the simulation, the final or
the equilibrium state values for temperature and pres-
sure down stream of the detonation structure report in
good agreement with results by Li, et alJ17^ Figurefll]
basically addresses these agreements by presenting pro-
files of temperature, pressure,Mach number, and mass
fraction of HiO product along the x direction at Imm
above the wall.

While obtaining a very stable and fast reacting com-
bustion front results, we then slightly varied the initial
species concentration which will result in an induction
zone behind an oblique shock. HZ : O? : N% composition
of 0.296 : 0.148 : 0.556 by mass was used to generate
a structure of oblique detonations, consisting of a non-
reactive oblique shock, and induction region, a set of
deflagration waves, and a detonation front. Figure[12]

depicts this structure and suggests grid refining for re-
solving the near wall behavior of the deflagration waves.

The numerical code(FCT) used in the work of Li, et
al. is second order in space and second order in time,
while keeping the chemistry part simplest via the induc-
tion parameter model.'33-' In the current simulation, 48-
step combustion mechanism was considered and third
order accuracy in time and space was achieved. Re-
ported discrepancies in the induction zone structure is
under continued investigation and full description of the
explanations and suggestions will be reported in the fu-
ture.

RESULTS of MULTI-DIMENSIONAL
DETONATION WAVES

Basic Equations

Reactant is converted to product by a single-step ir-
reversible chemical reaction, governed by Arrhenius ki-
netics. The specific heat ratio, 7 is fixed at 1.2, and a
dimensionless parameter, Q+ is also introduced for the
specific heat of formation. The specific total energy is

• + Q+ZRT0 (23)

where Z is used to represent the reactant mass frac-
tion, namely the ratio of pi to p total. Further TO is the
unreacted flow temperature. From this type of formu-
lation of total energy, the temperature can be obtained
by replacing p/p with RT such that the temperature T
can be solved once all other values are computed from
the numerical conservative value, e. Further, the case of
one-step R —> P irreversible reaction can be represented
by the Arrhenius kinetics such that

(24)
(25)

Here, E+ is the activation energy parameter and TO
is again the initial temperature of the unreacted gas
mixture.

Initial Setup

The initial data consist of the theoretical Z-N-D pro-
files on which a transverse perturbation must be added
to excite a fully multi-dimensional instability. If no
transverse gradient is present in the initial data, one-
dimensional profile will be preserved such that only a
longitudinal instability, if it exists, can be observed.
A small sinusoidal perturbation of the form, u — u +
eusin(87r?/) is prescribed on the front of the wave and
each fluid variables in the Chapman-Jouguet states can
also be perturbed in a similar manner. The following
is a description of the Chapman-Jouguet states used as
the initial data in the present simulation. The over-
drive parameter /, which is defined as the square of
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Burnt(Postshock) Unburnt(Preshock)
T
P
u
7

TCj = 2853° K
PCJ- 116,717 Pa
D = 1956.46m/s

1.2

298° K
6666Pa

0
1.2

Ishock 1.095

Table 6: Flow Conditions with Chapman-Jouguet States

the ratio of the detonation propagation velocity to the
Chapman-Jouguet velocity, / = (D/Dcj) , is held at
1.2. Erpenbeck'-34-' gives one possible form for this C-J
detonation speed:

g+(72 - (26)

where Q+ is also a known parameter such that the ini-
tial inflow speed D can be set accordingly.

Two-Dimensional Detonation Waves with Regular
Cell Structures

M-type Z-N-D waves are perturbed to develop into
two-dimensional detonation waves with regular cell
structures using the third-order semi-implicit Runge-
Kutta scheme for highly accurate time stepping and the
third-order ENO schemes for high-order shock captur-
ing calculations. A set of uniform 300 by 300 grids was
used in the physical domain of a 9 by 9cm duct using pe-
riodic boundary conditions in the transverse direction.
The data for this case are given below:

7 E+ / Lx
1.2 10 50 1.2 9cm 9cm

Table 7: Parameters Used in the Simulation

For the mixture of ideal gas with constant 7 = 1.2,
molecular weight, and heat of reaction, the chemistry is
modeled with a single-step reaction governed by Arrhe-
nius kinetics. The reaction coefficient K in Eqn.[24] is
chosen at 3.124. Figure[14] depicts the evolving Mach
structures and triple-point collisions from which one can
see the rolling up of the vortex sheets as soon as they
detach from the triple points at the detonation front.

Coarse Grid Fine Grid
300 x 300 600 x 600

Table 8: Computational Domain Size

The converged results are assured by the continuing re-
production of the vortex pairs. At a qualitative level,
maximum vorticity peak to peak distances ratios are
measured and compared within 6% of error to the re-
ported results of Bourlioux^ '. Figure[15] is a sequence
of density contours in which the regular cell pattern be-
hind the detonation front is observed, and the similarity
in the mushroom like vortex structures to the reported
results of Bourlioux is further obtained. Furthermore,
the grid independence check was performed by running
a similar condition at a 600 by 600 grid size, and the
obtained vorticity contour in Figure [16] reports no ad-
ditional structures to that of the coarse grid cases at 300
by 300. Calculated paths of triple point movements in
Figure [17] is a representation of an approximate mea-
sure of the cell size and the cell reproduction time. It is
a y-t contour plot of pressure from which one can esti-
mate the cell size corresponding to species of the given
idealized system. A typical one-cell size of hydrogen-air
detonation is of order 10(/^5ec)' ' and the observed size
in the current simulation is approximately 38(/*sec).

Since the simulation of an idealized multi-dimensional
detonation involving an one-step irreversible chemical
reaction with two species present is valid only at a qual-
itative level, a detailed HI — Oi mechanism was also im-
plemented in the further computation and validation of
detonation waves with all of the nonequilibrium effects
as considered in previous one-dimensional test cases.
Table[9] lists the flow conditions of the multi-species,
thermal and chemical nonequilibrium flow simulation
performed here.

Burnt (Postshock)
T
P
u
7

zm°K
304,000-Pa
1618m/s

1.556

Unb-urnt(Preshock)
298° K
6666Pa

0
1.556

Table 9: Flow Conditions for a Computation with De-
tailed Model of Chemical Kinetics and Thermophysics
for Viz '• O2 '• Ar/2 : 1 : 7 Two-Dimensional Detonation

A good agreement with both experiment (Dormal,
Libouton fe Van Tiggelen 1979'37') and numerical simu-
lation(Lefebvre, Kailasanath & Tiggelen 1993[3S]) is ob-
tained for a well shaped cellular pattern characteristic of
detonations in argon-diluted, low-pressure mixtures of
hydrogen and oxygen. 156 grids span a channel of width
4.68cm and one-dimensional reacting shock is initially
perturbed to develop into unstable transverse detona-
tion waves. The observed triple point movement coin-
cides with the reported results of Lefebvre and Oran,
and computed cell size is also identical as in the exper-
iment. Only a small discrepancy is noted in the com-
puted average detonation speed(see TableflO]) , where
the speeds 1640, 1623, 1475, and 1619 m/s correspond

American Institute of Aeronautics and Astronautics



to the values obtained from SIRK-3C, the computed
value of Lefebvre'-36-', the experimental value of Dormal,
Libouton and Van Tiggelen(1979)[3^, and the calcu-
lated CJ detonation velocity"- ' , respectively.

_____________________
SIRK-3C 1640
Numerical Simulation by Lefebvre 1623
Experiment by Dormal, et al. 1475
C-J velocity 1619

Table 10: Comparison of Computed Average Detonation
Velocity, Dave, to the Previously Reported Values

All of the significant structures of the detonation
region is observed including the continuous evolution
of Mach structure with spinning contact discontinuity.
Observations regarding the H2 — 02 detonation waves
are intended for suggesting the ball-point average speed
of the propagating detonation waves in a combustible
mixture, and further supports the time accuracy na-
ture of the high-order semi-implicit Rosenbrock Runge-
Kutta(SIRK-3C) scheme.

STIFF RELAXATION SYSTEMS

The high order Semi-Implicit Rosenbrock Runge-
Kutta schemes have been tested in multi-dimensional
detonation cases and shown to reproduce previously re-
ported results of both numerical simulations and exper-
iments. Work is continued on the comparison of the
SIRK-3C scheme to the Strang Time Splitting methods
in stiff model problems of Yee'2' and Chen, et al.'18' for
a discontinuity and a smooth sinusoidal wave propaga-
tion.

Semi-Implicit Coupling vs. Time-Splitting

In going about the solving of the fluid and stiff
source terms, one can achieve a second order in
time integration by the time-splitting or the fractional
stepping'38"39'. Applying the Strang splitting'1' to
maintain the second order accuracy, the solution at time
n + I is given as

(27)

where each fluid and reaction operators are denoted Lj
and Cs respectively. A half step in time is taken in
the linear implicit solving of the source term and the
solution is used as an initial value to solve a full one
step fluid calculation. Final half step in time is taken
in updating the source term calculation achieving ef-
ficiently second order in time, and spatial accuracy is
determined arbitrarily depending on the choice of a con-
vective scheme by the user. Here we described the ex-
act version that is used in the present analysis of time

stepping schemes and thus ENO-Roe-S-3(see Shu and
Osher'28') scheme is used in calculating the inviscid flux
term, further advanced in time via explicit RK-3. This
allows the flux operator iCs(k) locally third order in
time and third order in space.

(28)
+ b32i<2)

= U +

In achieving a high order in space, the convective flux
discretization of Shu and Osher was used.'28'

SIRK-3C treats the flux discretization F(u] explicitly
and the source term S(u) implicitly via semi-implicit
fashion. A scalar version in relevance to the current
time-stepping analysis is written as follows:

_
1 (29)

(30)

K3 = -•

(31)

(32)

where in this scalar format, the Jacobian J is replaced
by the derivative, S (u), and all of the Runge-Kutta
coefficients were reported in the earlier work. Here,
F(u) is discretized in the same fashion as in the Time-
Splitting case and thus third order ENO-Roe is again
implemented. Another version of the SIRK, namely
the fully iterative SIRK-3A, was also implemented in
the current analysis and the code performances to the
time-split approach is reported herein.
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Propagation of a Discontinuity

When the initial condition is given by the piecewise
constant data,

u(x,0) = 1 if x < 0.3
0 if x > 0.3 (33)

and the stiffness parameter kfj, is much larger than 1,
the solution is a propagating step function at incor-
rect speeds. This stiffness parameter is called the "cell
Damkohler number", which is a ratio of advection time
scale Atf to the relaxation time scale for the source term,
namely -. Figure [18] shows the result of solving this
model equation with Time-Splitting/ENO-Roe-3/RK-
3, and SIRK-3C/ENO-Roe-3 schemes.

Two methods become nearly identical when stiffness
is reduced to zero as in the case kfj, — 0. This adds
to the observation that approximately one cell is used
to capture a shock after the subcell resolution at the
ENO convective stage. When the stiffness is large such
that the cell Damkohler number becomes much greater
than 1, the prediction of the shock location starts to
fail. In fact at a very highest stiffness at kfj, > 15,
the discontinuity does not propagate at all. This is un-
derstood as the small time scale introduced from the
source term relaxation governs the computation, thus
the points within the discontinuity are turned on incor-
rectly. We have also shown that this improper excita-
tion of the points within the discontinuity has even a
greater effect in the overall stiffness test when the orig-
inal ENO-3 without the subcell resolution or the basic
TVD is used instead.

Chang" has applied the idea of subcell resolution
technique on the source term calculation in addition to
applying it at the ENO stage, and have shown to im-
prove the range of stiffness at which the shock location
is correctly predicted. For our analysis, we have shown
a slight improvement of predicting the propagating dis-
continuity speeds to the original results of LeVeque and
Yee and further implemented a higher order in time
and more sophisticated ENO-3 convective schemes to
show that both SIRK-3C and Time-Splitting methods
fail when a large stiffness is encounted. A fully iterative
SIRK-3A is also tested against this model problem and
found to produce similar results as the SIRK-3C.(see
Figure[19]) This expected phenomenon motivates us to
conduct a detailed analysis of the two methods of other
kinds while allowing only a fixed stiffness that will allow
a thorough temporal as well as spatial accuracy compar-
ison. The propagation of an initially smooth sinusoidal
data is discussed in the following section.

Propagation of a Smooth Function

The model equation of non-homogeneous hyperbolic
equation have three points of equilibria as mentioned
earlier. When the unstable points other than the three
points are used as the initial condition, the solution

tends to either the two of the stable equilibria, namely
0 or 1. Following the linear perturbation analysis, one
can approximate an exact solution to the system. Let
u is described by one of the following three expressions,
and apply these to the system as initial data:

u — 1 + eu' (34)
(35)

(36)

while the perturbation parameter E is kept small (usu-
ally less than 10~3) in order for the linear perturbation
analysis to hold true. Also «' is a derivative of u with
respect to t. If we let u = 1 + su' as initial data, the
governing equation with an order of magnitude analysis
can become:

u't + u'x = -vj (37)

where the fluctuation magnitude, A(t), can be solved
for. The expression for u' = A(t)etax is substituted,
and then found A(t) = e^+ta^. For a small value of s,
the analytical solution is finally obtained:

u/x £\ _ j _j_ £e-^tgict(x-t) /2g>

Similar analysis can be done to find solutions to the two
other points of equilibrium as well.

Figure[20] depicts the numerical solution of the sys-
tem at time 0.09375 when u = 1 + s cos ax is used as
initial data. In order to minimize spatial error accumu-
lation from the current TVD or ENO scheme, we have
derived the following explicit upwind scheme of order
three:

(39)
Periodic conditions are enforced on the boundaries of
a single wave domain of length and period of a unity.
A convenient parameter of the system stiffness, the
"Damkohler number V" is defined as the ratio of the
fluid time scale to the reaction time scale. A period of
1 is taken as the fluid time scale, while - is the repre-
sentative reaction time scale.

^reaction
(40)

For the solution in the figure, this Damkohler number
and the CFL number are kept at 30 and 0.75 respec-
tively, allowing relatively large Ai for the time advance-
ment.

Tablefll] briefly summarizes the L^, norm error, de-
fined by LOO — rnax\Ui — Ui f : c a c t \ . The error ratios RZ
for SIRK-3C and R2 for Time-Splitting show that the
schemes are pth-order accurate in time. That is the
computed error ratios when the At is halved to ^,
should become R3 = 23 = 8 and R2 = 22 = 4, as
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CASE SIRK-3C TIME-SPLIT

A*
At
—

£00
0.178xlO-8

0.221xlO-9

R3

8.05

ico
O.lOSxlQ-7

0.248xlO-8

RZ

4.37

Table 11: Numerical Errors with Z> = 30 and A = 0.75

clearly it is the case in the reported results. With the
magnitude of LTO norm error nearly 11 times greater
than that of the SIRK-3C, Time-Splitting scheme has
its errors mainly evolved from the temporal accuracy.
This is an expected behavior of a second-order scheme
that when Ax is reasonably small, the effect of tempo-
ral accuracy is significant in total error, suggesting a
higher order scheme like the SIRK-3C.

When the solution does not evolve it self with many
small scale structures and thus a fast and efficient
method is simply needed to do the job, the time-
splitting is the way to go. As shown in this paper and
others, time-splitting can meet most of the stiffness fea-
tures of the problem. Nevertheless, when introduced
a complicated flow structures with presence of many
small scale structures, like the small rolling up of the
vorticies and the triple point structures behind a prop-
agating two-dimensional detonation, SIRK-3C can be
more appropriate. Although the users must compro-
mise between the robustness at a very high stiffness and
the accuracy at a reasonably high stiffness, when going
about choosing one of the two considered time-stepping
methods in this paper.

Navier-Stokes Limit Model

A prototypical relaxation model'18' is now considered
to suggest the reduced accuracy of the Splitting schemes
for a solution with complicated structures.

dth+ dxw

with initial conditions

h(x,Q) =
w(x,0) =

= 0

0.2sin(87r:c)

(41)

(42)

(43)
(44)

This is a 2x2 system with its long-time behavior analo-
gous to a parabolic system with added convection term
as noted below.

h - , (45)

(46)

The "Damkohler number" as in the previous cases
is 108, making the considered problem a hyperbolic
system with relaxation terms at its limit of stiffness.

The spatial resolution is fixed at Ax = 10 2 while the
temporal increment is chosen at At = 0.005. At time
t = 0.3, numerical solutions are obtained for both the
Strang-Splitting and SIRK-3C time stepping methods
and illustrated in Figure[21]. Shi Jin has considered
the same problem and have shown to improve the typi-
cal first order behavior of the Strang Splitting for com-
plicated structured solutions by the second-order time
splitting.'8' This second-order time-splitting takes the
following form and it basically combines the two-stage
explicit Runge-Kutta and the stiff ODE solver:

£s(aAi) : u* = u* +aA<s(u*)

£,(6At, + 6Ats(u**)
(47)

The method is second order if the coefficients are chosen
as follows®:

a= -l,b = l , c = 2

The convective operators, £/ combine to give the
second-order explicit Runge-Kutta method when the
source term is zero.(s(u) = 0)

In order to reduce any additional errors introduced
from the spatial calculations and thus to make a fair
comparison of the three time stepping methods, two
additional cares are considered:

(a) For the system of two variables, flux-vector split-
ting is used based on the two characteristic wave speeds,
namely ±\/l + h.

where the Jacobian matrices |£ or A+ and A~ are
given by,

A+ = (49)

(50)

Here the matrix T is the eigen vector matrix for the two
eigen values, and the vector u is given by u = [h,w]T.
Depending on the direction of the characteristic waves,
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one of the following third-order explicit upwind schemes
are used:

dx

(51)

(52)

(b)For both of the time-splitting schemes, the stiff
ODEs or the chemical relaxation equations are solved
with the Newton's iteration method in order to "elimi-
nate" any additional errors from solving them approx-
imately. Noticeable improvement in the solution is ob-
tained from this second-order time-splitting of Shi Jin;
however, the solutions still overshoot at the locations
of complicated structures and thus illustrate an inferior
result to those of the SIRK-3C. It is fairly appropri-
ate to say that both of the Strang Time-Splitting and
the improved Second-Order Splitting fail to approxi-
mate the exact solutions with complicated structures as
accurately as the third-order Semi-Implicit Rosenbrock
Runge-Kutta scheme, and the high-order temporal cal-
culation is a critical parameter when considering a stiff
relaxation system with existing small scale structures
as in many of the reactive flow situations, considered
in this paper. Figures[22 - 24] also support the same
observations at a varied range of stiffness.

CONCLUDING REMARKS

New high-order semi-implicit Runge-Kutta schemes
are applied to simulate multi-dimensional detonation
waves with complicated small scale structures. Unlike
the conventional second-order time-splitting methods,
these new time-stepping methods preserve their third-
order accuracy even if the small relaxation time is not
temporally well-resolved. Because of the coupling be-
tween the source and fluid terms in each of the Runge-
Kutta stages, SIRK-3C may become less robust than
the decoupled time-splitting methods when the under-
resolved chemical relaxation time scale approaches its
limit at zero. However, numerical analyses of this pa-
per and others have shown the generation of totally in-
correct and yet stable results at this theoretical limit
of stiffness. Then how one can compromise between the
high-accuracy of the solutions over the robustness of the
code at the stiffness limit will depend on the applica-
tions on which the proposed schemes will be considered.
In conclusion, as far as the multi-dimensional detona-
tion waves are concerned, either time-stepping meth-
ods with the third-order convective schemes with some
type of resolution technique will be suitable for a fairly
accurate results; however, for added confidence in the
obtained numerical results, second-order time-splitting
should be used if the imposed chemical relaxation time
scale due to a considering combustion mechanism is
considerably close to the asymptotic limit of stiffness;

however, the semi-implicit Runge-Kutta scheme has dis-
cernible advantages over the time-splitting when small
scale structures are evident in the solutions.
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Region 2

Incident Shock

Undisturbed

Region 2

Figure 1: Schematic of the geometry used in the shock
tube calculations. Top panel: incident shock of speed
Wshocfc traveling to the right and reflected at the wall.
Lower panel: the propagation of the reaction wave into
region 2 in later time. Reactive wave will eventually
catch up with the reflecting shock and become a trans-
mitted detonation.

Snap 2 ;

Experiment (Cohen.et al. 1967)
FCTcodc(Oran,etal. 1982)
SIRK3 code simulation

2.47x10"
0.00 0.05 0.10 0.15

Position (m)

Figure 2: Calculated temperature contour, showing the
position of the reflected shock front, reactive wave, trans-
mitted detonation, contact discontinuity, and reflected
expansion wave as a function of time. See Figure[3] for
Snapl and Figure[4] for Snap2. Wall is on the right side.
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Figure 3: Snapshot!: calculated temperature profile at
time before reacting wave catching up with reflected
shock. Waves are traveling to the left.
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Figure 4: Snapshot2: calculated temperature profile at
time the transmitted detonation, contact discontinuity,
and reflected expansion wave are observed.
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Outflow

Figure 5: Schematic of the computational domain at-
tached to the wedge surface.
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Figure 7: Calculated temperature profile along the cut
at grid row 32
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Figure 6: Temperature and pressure contour for case in Figure 8: Calculated pressure profile along the cut at
Table[3] on a 23° wedge. grid row 32.
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Figure 9: Temperature and density contour for case in
Table[4] on a 23° wedge in stoichiometric hydrogen-air
mixture(H2 : O2 : N2/2 : 1 : 3.76 by moles)
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Figure 11: Profiles of temperature, Mach number, pres-
sure,and mass fraction of water along the x direction
at 1.0mm above the wall from the simulation shown in
Figures[9][lO].
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Figure 10: Pressure and Mach number contour for case Figure 12: A steady detonation structure on a 23° wedge
in Table[4] on a 23° wedge in stoichiometric hydrogen-air in a 200 by 70 grid simulation.
mixture(.ff2 : Oz • /V2/2 : 1 : 3.76 by moles)
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Figure 13: Schematic of triple points movements: just
before the triple points collision at Timel, at collision
in Time2, and after the triple points collision at TimcS.
Roll-up vortices of opposite direction are found behind
the Mach shocks(MS) while Reflected shocks(RS) are im-
pinged on the Incident shock(IS) at triple points.

Figure 15: Sequence of three snapshots of the flow field
through a cell with density. E+ = 10; Q+ = 50; / = 1.2

Figure 14: Sequence of three snapshots of the flow field
through a cell with vorticity. £+ = 10;Q+ = 50; / = 1.2

Figure 16: Doubled grid result of vorticity field. E+

10;Q+ - 50;/ = 1.2
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Figure 17: Tracks of triple points on pressure contours
in the Y-t plane
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Figure 18: Numerical results using (A) SIRK-3C
with ENO-Roe-3 and (B) Time-Splitting with ENO-
Roe-3/RK-3. The cell Damkohler numbers are fc/i =
0,0.15,1.5,15, increasing from top to bottom. -:true so-
lution. +:computed solution.
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Figure 19: Comparison of the two versions of the Semi-
Implicit Runge-Kutta schemes at kti — 1.5 : (A) fully it-
erative SIRK-3A, (B) Rosenbrock-type SIRK-3C; ENO-
Roe-S-3 is the convective scheme used in both cases. -:
exact solution. +: computed solution.
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Figure 20: Numerical result using SIRK-3C with third-
order explicit upwind scheme shows no visible discrep-
ancy in the propagation of a sinusoidal wave of length one
at a moderate stiffness( T> = 30). -analytical solution at
small e. +:computed solution.
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Figure 21: Numerical results using Strang-Splitting,
Second-order Splitting, and SIRK-3C from top to bot-
tom, (n = 108, t — 0.3. -: exact solutions, +: numerical
solutions)
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Figure 22: Strang-SpJitting at varied stiffness: (a) n =
100 and (b) ^ = 1000 (t - 0.3. -: exact solutions, +:
numerical solutions)
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Figure 23: Second-order Splitting at varied stiffness: (a)
M = 100 and (b) ti = 1000 (t = 0.3. -: exact solutions, +:
numerical solutions)
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Figure 24: SIRK-3C at varied stiffness: (a) M = 100 and
(b) fj. = 1000 (t = 0.3. -: exact solutions, +: numerical
solutions)
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