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The stability of compressible plane Couette flow, which is a simple case of hypersonic wall-bounded shear flows, is not well
understood even though incompressible Couette flow has been studied extensively by linear stability analysis and shown to
be stable to linear disturbances. As a first step in studying the stability of 3D hypersonic boundary layers, we study the
temporal stability of compressible Couette flows with a perfect gas model. The full compressible linear stability equations are
solved by both a high-order finite-difference global method and a Chebyshev spectral collocation global method. The
accuracy of the linear stability codes are validated by comparing the solutions from the two approaches with known solutions
for compressible boundary layer. Unstable first and second modes are found for compressible Couette flow at finite Reynolds
numbers. The inviscid second modes are found to be the dominant instability. The results are consistent with the prediction
that unstable modes are possible for compressible Couette flow. The second modes are found to be 2D, and stabilized by
viscosity. (Author)
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Abstract

The stability of compressible plane Couette flow,
which is a simple case of hypersonic wall-bounded shear
flows, is not well understood even though incompress-
ible Couette flow has been studied extensively by linear
stability analysis and shown to be stable to linear dis-
turbances. As a first step in studying the stability of
three-dimensional hypersonic boundary layers, this pa-
per studies the temporal stability of compressible Cou-
ette flows with a perfect gas model. The full com-
pressible linear stability equations are solved by both a
high-order finite-difference global method and a Cheby-
shev spectral collocation global method. The accuracy
of the linear stability codes are validated by compar-
ing the solutions from the two approaches with known
solutions for compressible boundary layer. Unstable
first and second modes are found for compressible Cou-
ette flow at finite Reynolds numbers. The inviscid sec-
ond modes are found to be the dominant instability.
The results are consistent with the prediction by Duck
et al. that unstable modes are possible for compress-
ible Couette flow. The second modes are found to be
two-dimensional and are stabilized by viscousity. The
Mach number corresponding to the most unstable sec-
ond modes increase with Reynolds number but has a
finite limit. The second modes are destabilized first by
wall cooling and then stabilized by further reduction of
the lower wall temperature. This is different with what
is known for boundary layer second mode instability.
The first mode instability characteristics are also dis-
cussed in this paper.

1 Introduction

The understanding of the stability and transition mech-
anism of high-speed flows are critical to the accurate
calculations of aerodynamic forces and heatings to su-
personic and hypersonic vehicles. Current understand-
ing of the laminar-turbulent transition in compressible
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boundary layers comes mainly from the parallel linear
stability theory'1' 2' 3' 4'. Mack'2' did extensive work on
the linear stability of two and three-dimensional super-
sonic boundary layers and shear flows. One of the most
important contributions by Mack to the compressible
linear theory is that he discovered a new family of
higher modes at supersonic speeds. He showed that,
for compressible boundary layer stability, the lowest-
frequency two-dimensional second mode (Mack mode)
is the most unstable one for Mach number greater than
about 4.

The linear stability theory provides many insights to
the stability properties of compressible boundary lay-
ers. It also serves as a convenient meanings in analyz-
ing the stability characteristic of various flows. How-
ever, it neglects non-parallel effects of the boundary
layer and confines the problem to the initial growth
of the disturbances at a local station of the boundary
layer. In reality, the thickness of the boundary lay-
ers grows downstream, and the transition process con-
tinues as the amplitude of the disturbances increases.
Nonlinear interactions between disturbances occur to
cause the rapid growth of the disturbance and even-
tually the breakdown to turbulence. Furthermore, for
three-dimensional boundary layers, it has been shown
experimentally'5' 6> 7' that cross-flow instability, nonlin-
ear interaction of modes, and distortions of the basic
flow are important in the transition process. Although
the experiments were conducted in the low Mach num-
ber regime, it is reasonable to speculate that similar
phenomena may occur in the supersonic and hyper-
sonic flow regime. The linear stability theory and the
eN method'8' 9' for transition prediction can not ac-
count for these physical phenomena properly. The
remedies in these situations are the direct numerical
simulation (DNS) method '10^ and the Parabolized Sta-
bility Equations (PSE) method developed by Bertolotti
and Herbert'11'12'13]. The DNS method is accurate
but computationally more expensive comparing to the
PSE method. In the PSE method, spatial evolution of
disturbances are computed by an efficient space march-
ing algorithm. The PSE method has been successfully
applied to many subsonic and supersonic boundary lay-
ers.

To understand the supersonic and hypersonic flow



transition, accurate linear stability analysis codes are
needed in conjunction with DNS or PSE tools to pro-
vide initial conditions as well as physical insights. In
developing these codes, temporal linear stability of
compressible Couette flow is chosen as the objective
since it is not yet well understood. Not many re-
sults, numerical or experimental, with regard to the
stability of compressible Couette flow exist. Therefore,
more elaboration is required on the validation of re-
sults. We have hence developed two global stability
computer codes. One uses a Chebyshev spectral collo-
cation method'14', the other uses a fourth-order finite-
difference method. The accuracy of the linear stability
codes are validated by comparing the solutions of com-
pressible flat plate boundary layer with known solu-
tions in Malik'14'. The accuracy of the calculations on
compressible Couette flow are ensured by comparing
the solutions from both methods.

Extensive work has been done with regard to incom-
pressible plane Couette flow previously due to the ex-
istence of a simple exact solution of the Navier-Stokes
equations. The first general proof of stability was given
by Romanov'15'. However, instabilities were observed
in experiments. '16'17'. A number of investigations
have been made to resolve the dichotomy. The evi-
dence seems to point to the finite-amplitude (nonlin-
ear) effects. The compressible stability of plane Cou-
ette flow, on the other hand, is much less well under-
stood. Glatzel'18'19' studied this problem under the
assumptions of constant viscosity, density and pres-
sure, which led to constant temperature. Girard'20'
considered the same problem allowing for variations in
density and pressure. Duck et al.'21' solved the two-
dimensional small-amplitude disturbance equations nu-
merically for the same problem at finite Reynolds num-
bers using a proper perfect gas model, and investigated
its stability at the inviscid limit. They found unstable
second modes in the inviscid limit but they didn't ob-
tain unstable modes in the viscous computations. We
compared the results of our numerical codes with some
of those in [21] and conducted viscous computations
over a range of Mach numbers and wave numbers at
finite Reynolds numbers. As a result, unstable modes
were discovered at finite Reynolds numbers for a range
of Mach numbers and wave numbers. The unstable
modes found are the inviscid first modes and second
modes. Since unstable second modes are dominant for
compressible Couette flow, their characteristics were
investigated thoroughly on the effects of compressibil-
ity, three-dimensionality, and wall cooling. The results
of the linear stability analysis are used to check with
the direct numerical simulation results by Zhong'22'
and will eventually serve as initial conditions for PSE
simulations of the transition for compressible flows.

Compressible Linear Stability
Formulation

Three-dimensional Navier-Stokes equations for a per-
fect gas model upon which current stability results are
based can be found in Malik'14'. It's given below for
completeness.

(2)

p = pK.T, (4)

where q is the velocity vector, p the density, p the pres-
sure, T the temperature, Tl the gas constant, cp the
specific heat, k the thermal conductivity, /z the first
coefficient of viscosity, and A the second coefficient of
viscosity. The viscous dissipation $ is given as

(5)

For Couette flow, a compressible Newtonian perfect
fluid is confined between two infinite parallel planes de-
fined by y = 0 (lower wall) and y = L (upper wall).
The upper wall has velocity f/oo (the unperturbed up-
per wall properties are denoted by a subscript oo),
taken parallel to the plane of the wall, while the lower
wall is stationary. We non-dimensionalize velocities by
t/oo, lengthscales by L, density by p^, temperature by
TOO , and pressure by px U^. The dimensional timescale
is L/UOQ. The Reynolds number is defined by

(6)Re =

the Mach number M^ by

(7)

where R — cp — cv, and cp and CD are the specific heats
at constant pressure and volume respectively, 7 is the



ratio of specific heats taken to be 1.4. The Prandtl
numer is defined by Pr = p,cp/k and assumed to be a
constant 0.72. We assume that viscosity depends solely
on temperature, and Sutherland's law holds,

the linearized perturbation equations, leads to the fol-
lowing system of ordinary differential equations:

(AD2 +BD + C)$ = 0 (U)

(8) where

where C is a constant taken to be 0.5 in this paper.
Finally, A = -2/3/u is assumed throughout the pa-
per. Note that some linear stability computation is
also done for the boundary layer case in comparison
with Malik's results'14', where Reynolds number, the
constant C in Sutherland's law, and some other details
differ from those mentioned above. However, the lin-
ear stability equations derived below is universal with
the exception of main flow parameters and boundary
conditions.

The stability analysis is based on a normal mode
analysis of perturbation equations of the nondimen-
sionalized nonlinear governing equations. The pertur-
bation equations are derived by representing the in-
stantaneous flow variables as a sum of a mean and a
fluctuation quantity, i.e.

- [u(y),v(y),p(y),f(y),w(y)}'1 (12)

and A, B and C are 5 x 5 matrices given in [14].
The operator D is the derivative operator d/dy in the
wall-normal direction. The temporal stability analysis
solves u and [u(y),v(y),p(y),f(y),w(y)]T as eigenval-
ues and eigenfunctions of the homogeneous boundary
value problem given by equation (11). The eigenvalue
problem was solved by a fourth-order finite-difference
method and a spectral collocation method described in
the following section.

Numerical Methods for Stabil-
ity Equations

u = U + u', v = V + v',_ w = W + w'
(9)

Substituting equation (9) into the nondimensional form
of the governing equations (1) to (5) yields the per-
turbation equations (for details see Malik '14'). One
may then apply the "locally parallel flow assumption"
to the linearized perturbation equations assuming that
the fluctuations of flow quantities are represented by
harmonic waves of the following form:

Various numerical methods for solving the linear sta-
bility equations of the hypersonic boundary layers were
discussed and compared by Malik'14'. We used a
fourth-order global finite-difference method (4FD) to
compare with the second-order finite-difference scheme
(2FD) and the Chebyshev spectral collocation method
(SC) described in Malik'141.

3.1 Fourth-Order
Global Method

Finite-Difference

uV,p',T',u/) = [u(y),v(y),p(y),
f(y),w(y)}exp[i(ax + J3z - wi)], (10)

where a, ft are wavenumbers and u> is the frequency of
the disturbance waves. These parameters are in gen-
eral complex numbers. The notation for the complex
amplitude function of a typical flow variable, say u, is
u(y). Since we focused on the temporal linear stability
of the compressible flows in current research, a, ft are
given as real constants while w is an unknown com-
plex parameter and to be solved for. The real part of
w, Re{w}, represents the frequency of the disturbance
while the imaginary part, Im{u;}, represents the ampli-
fication rate. When Im{w) is greater then 0, the dis-
turbance is unstable. Substituting equation (10) into

In the finite-difference method, equation (11) is dis-
cretized by finite difference approximation to the
derivatives. Malik'14' used a staggered mesh for the
second-order finite-difference scheme to avoid using the
boundary values of p which are unknown. In imple-
menting the fourth-order finite-difference method, we
use a non-staggered grid. One-sided difference formu-
las which do not involve the wall points are used to
approximate the first derivative of p. The fourth-order
finite-difference formulas at a grid point j, where j is
from 1 to N + 1, are the following.
For j from 3 to N - 1,



For j = 2:

For j = N:

(14)

(16)

a matrix eigenvalue problem is formed:

(24)

where a; is the eigenvalue and $ is the discrete repre-
sention of the eigenfunction. The eigenvalue problem
is then solved using the QZ eigenvalue algorithm in the
IMSL computer library.

A natural choice for the stretching function in solving
Couette flow is

I —
(25)

(17)

(18)

where 77 6 [0,1],y € [0,1]. However, this transforma-
tion has a singularity in dr)/dy. A modified transfor-
mation is thus used given below:

cosirr) —
cos[it(l - A)] -

(26)

The first derivative of p near the wall are given below. where A is chosen to be 0.001 and T) 6 [A, 1 - A], y €
Forj = 2: [0,1].

,- = -13̂  (-25*, +48*j+1

For j = 3:

For j = N:

(19) 3.2 Chebyshev Spectral Collocation
Global Method

The discretization formulas for equation (11) using the
Chebychev spectral collocation method can be found

(20) in Malik'14' and are given below for completeness. The
Nth-order Chebyshev polynomials Tjv are defined on
the interval j £ [-1,1]- The collocation points £,,
which are the extrema of TN, are

+36*j_2 -

For j = J V - l :

25*,- ) •
(21)

(22)

When equation (11) is discretized using the 4FD for-
mulas given above, along with the boundary conditions
for compressible Couette flow:

fi(0) = v(0) = tu(0) = 0,
fi(l) = 6(1) = t6(l) = 0, (23)

(27)

In order to apply the spectral collocation method,
an interpolant polynomial is constructed for the depen-
dent variables in terms of their values at the collocation
points. An ATth-order polynomial is

TV

*=0

(28)

where the interpolant A* (£) for the Chebyshev scheme
is

(29)



where Co = c/v = 2, and ck = I , 0 < k < N.

The first derivative of <^>(£) may be written as

N

I
k=0

(30)

where Ejk are the elements of the derivative matrix
defined as:

Ejk — ——" ,„*. (31)

2JV2

The Neumann boundary condition for temperature
at the lower wall is enforced using:

dy

N
= 0. (39)

k=0

The Neuman conditions on pressure are enforced as

dp
dy = a,

y=0

dp
dy = b, (40)

s/=i

where a and 6 are evaluated at the two boundaries us-
ing the normal momentum equations. Now the same

(32) matrix eigenvalue problem is formed as in equation
(24) except that $ contains 5N — 1 elements instead
of 5N — 4 elements as in the 4FD scheme. Again, the
eigenvalue problem is solved by an IMSL subroutine.

(33)

The transformation between physical and computa- 4 Comparisons of Code Perfor-
tional domains is manCC

£,•=2^-1, where ye[0,l], (34)

which clusters the grid points close to both walls. The
scaling factor for the transformation between physical
domain y and computational domain f is given as

= 2; j = 0,l,...,N, (35)

then the first derivative matrix F in the physical do-
main may be written as

Fik = Sj

and the second derivative matrix Gk is

Gjk = FjmFmk.

(36)

(37)

Now the governing equation (11) may be written at the
collocation points as

N N

k=0 k=0

We first checked our linear stability codes by compar-
ing the linear stability solutions from both approaches
for flat-plate boundary layer to the known solutions in
Malik'14'. The only differences in solving the linear sta-
bility of compressible boundary layer and Couette flow
are the main flow and possibly the boundary condi-
tions. Indeed, once the accurate main flow profiles are
obtained and the proper boundary conditions used, the
linear stability codes can be used to solve for the linear
stability problem of any flow. In our case, besides the
main flow profiles, the only difference in solving the
linear stability of boundary layer and Couette flow is
the treatment of temperature perturbation at the lower
boundary. Malik'14' used f = 0 for boundary layer. We
used Neuman condition for temperature perturbation
at the lower wall to be consistent with Duck et al.'21'.

Malik'14' uses various numerical schemes to solve for
the boundary layer linear stability problem. For each
schemes, both global and local methods are used in
solving the problem. A global method computes all
the eigenvalues of the discretized system, while a local
method purifys the eigenvalues obtained by the global
methods and the associated eigenfunctions. Good ac-
curacy may be achieved using less grid points when
both methods are used. Since our numerical codes axe
global methods, more grid points are used in compar-
ing our results with those from Malik'14'. Malik'14! has
5 test cases for temporal linear stability of boundary



4CD(AT = 61)
SDSP(Af = 61)
MDSP(JV = 61)
SC(N = 100)

4FD(AT = 100)

Re
0.0367321
0.0367339
0.0367340
0.0367337
0.0367338

Im
0.0005847
0.0005840
0.0005840
0.0005845
0.0005840

Table 1: Real and imaginary parts of the eigenvalue u>
for test case 3, a = 0.06,0 = 0.1

layer. Comparisons for all cases are similar. The com-
parisons for test case 3 are shown in Table 1 as an ex-
ample. The conditions for test case 3 are Mach number
2.5, Re = 3000, To = 600°fl. In Table 1, 4CD. SDSP
and MDSP are the methods used in Malik [Hl 4FD
is our fourth-order finite-difference global method, SC
the spectral collocation global method. Note SC is the
same as the global SDSP in Malik '14l 4FD uses an ex-
ponential stretching function for boundary layer. The
stretching function for SC follows the stretching func-
tion described in Malik(14l for SDSP. From Table 1, one
sees that our numerical results agree very well with
Malik's results. 4FD method seems to perform better
than SC method does in this case. However, this is not
a general conclusion because the performance depends
on the stretching function, the shape of the main flow
profiles and hence flow conditions.

To validate the linear stability solutions for com-
pressible Couette flow, we compared the eigenvalue
spectra and eigenfunctions of the temporal linear sta-
bility equations resolved by both methods at various
flow conditions. In the comparisons, phase velocity c,
which is W/Q, is more often used instead of u to be
consistent with [21]. Furthermore, unless specified oth-
erwise, fl is set to zero in all cases. Figure 1 compares
the phase velocity spectra at M^ = 2.0, Re = 2 x 105,
and a = 0.1 computed using the the 2FD method, the
4FD method, and the SC method along with the result
by Duck et al'21' as shown in Fig. 1 c). All our cal-
culations use 100 grid points. The streamwise-velocity
eigenfunctions of the least stable mode computed by
both the 4FD method and the SC method are shown
in Fig. 2. The comparisons show clearly that the re-
sults from the 4FD method and the SC method agree
very well with each other. On the other hand, the 2FD
method does not resolve the spectrum as accurately as
the 4FD and the spectral methods do. Graphical com-
parisons of the eigenvalue spectra can also be made be-
tween our results and those in [21], even though they
did not solve the ^-momentum equation and therefore
didn't include the ^-direction modes in their results.
As an example, the eigenvalue spectrum in Fig. 2 d)
of [21] shown in Fig 1 c) agrees well with those in Fig.

1 b) with the exception of ^-direction modes.

Spurious modes were reported in Malik'14' for global
SDSP method. Since both our methods are global
methods, spurious modes are also observed in the re-
sults from both 4FD and SC methods. Fortunately
spurious modes are easy to identify because different
methods usually give different spurious modes. Lastly,
it is worth noting that when the eigenvalue and eigen-
functions for compressible Couette flow resolved by our
linear stability codes are used to check with the DNS
simulation conducted by Zhong'22', excellent agreement
is obtained (details see Zhong'22'). Once the accuracy
of the numerical codes were validated, the stability
characteristics of compressible Couette flow was stud-
ied.

Stability of Compressible Cou-
ette Flow

The stability of compressible Couette flow was studied
by Duck et al '21' solving proper equations. They did
extensive analysis in the inviscid regime of the problem.
Our focus is thus the viscous linear stability solution
of the problem. Since the linear stability results on the
boundary layer are more well-known, we also compare
the Couette flow stability characteristics with those of
boundary layer.

The effects of Mach number and Reynolds num-
ber in resolving the eigenvalue spectra

The effects of Mach number and Reynolds number
on the phase velocity spectra are illustrated in Fig.
3, where the phase velocity spectra corresponding to
Re - 5 x 105 and 5 x 106 are shown for Mach 5
and Mach 10 respectively. The results show that as
Reynolds number increases, the numerical resolution
for the eigenvalues in the neighborhood of the triple
point of the "Y" structure, which are of viscous na-
ture, become less adequate. This phenomenon agrees
with the conclusion by Reddy et al.'23' that this re-
gion of spectra is sensitive to very small errors in the
linear matrix elements. As a consequence, more ac-
curate schemes and more grid points are required in
the computations in order to resolve the eigenvalues
in that region. On the other hand, the numerical ac-
curacy of the least stable modes, which are above the
triple point region and of inviscid nature, is very good.
Based upon the comparisons of the eigenvalue modes in
the neighborhood of the triple points computed by both
methods, one sees that the SC method outperformed



the 4FD method for the same number of grid points.
Furthermore, at high Reynolds numbers, the difference
between the spectra resolved using both methods be-
comes large. The effects of Mach number on the spec-
tra can be seen by comparing Fig. 3 b) and 3 d) as
an example. It is observed that as Mx increases, the
eigenvalues in the neighborhood of the triple point be-
come easier to resolve for a fixed Reynolds number.

Neutral Stability Contours

After the validation of the accuracy of the 4FD
and SC methods, viscous computations were conducted
over a range of Mach numbers and wave numbers in-
cluding the region where instability has been found in
the inviscid limit by Duck et al.'21'. As a result, unsta-
ble modes have been found at finite Reynolds numbers
using both the 4FD and the SC codes. They are found
to be the inviscid first modes and second modes whose
characteristics are described by Duck et al.'21'. Note
that although we compare the stability characteristics
of the first and second modes with those of the bound-
ary layer first mode and second modes, we are not using
Mack's definition '2' for the first and second modes. Al-
though higher mode instabilities with small amplitude
are also found in the inviscid limit in [21], they are
not found in viscous computations. While the inviscid
first modes are only unstable for a small range of wave
numbers when Mach number is around 3, the inviscid
second modes are unstable for a large range of wave
numbers and Mach numbers starting from about Mach
2.5. Accordingly, we focused on the characteristics of
the inviscid second modes of the compressible Couette
flow.

Figure 4 shows a unstable second mode at M^ =
5.0, Q = 2.5, and Re = 105 in a phase velocity eigen-
value spectrum. Although the two methods resolve the
eigenvalues in the neighborhood of the triple point dif-
ferently, the eigenvalues of the least stable mode re-
solved by both methods using 100 node points are close
to convergence. Therefore, the inviscid first and second
modes are considered reliable results. The disturbance
eigenfunctions of the unstable mode in Fig. 4 a) and
4 b) resolved by both methods are shown in Fig. 4 c)
and 4 d). The real part and the imaginary part of the
second mode phase velocity at Mach 5 and Mach 10
are plotted as a function of wavenumber a in Fig. 5 a)
and 5 b) for two Reynolds numbers, 5 x 105 and 106

respectively. Figure 5 b) shows that the dependence of
the frequency of the second modes on Reynolds num-
ber is very week. Except for a small range of a, the
growth rate of second modes increase with Reynolds
number for a fixed Mach number, implying the invis-
cid nature of the unstable modes. Comparing Fig. 5
with Fig. 10 and Fig. 11 of [21], one sees that the be-

havior of the second modes resembles that of the second
mode computed by Duck et al.'21' in the inviscid limit.
Nonetheless, the mechanism of the instability is com-
plicated by viscous effects. In the inviscid limit, Duck
et al.'21' observe that the lower family modes, including
second modes, change from neutrally stable to unstable
as Re{c) goes from negative to positive. The results of
the viscous computation in Fig. 5 show that the second
modes can be stable for positive Re{c}. The effects of
Mach number on the second mode is more complex and
will be discussed separately.

The contours of temporal amplification rates of the
second modes, including the neutral stability curves, at
Mach 5 and Mach 10 along with the constant frequency
curves are shown in Fig. 6. The critical Reynolds
numbers are approximately 90,000 and 260,000 for
Mach 5 and Mach 10 respectively. Figure 6 shows that
as Reynolds number increases, the range of the wave
numbers corresponding to the unstable region expands
while Im{c} increases. It is thus clear that the vis-
cousity has a stabilizing effect on the second modes.
This observation agrees with the results for compress-
ible boundary layer as discussed in Mack ™.

Effects of Mach Numbers

To show the Mach number effects, we plotted the
constant phase velocity curves of the second modes for
a range of Mach numbers while fixing Reynolds number
at 5 x 105 and 106, as shown in Fig. 7. In both cases,
the unstable range for a expands first and then shrinks
as Mach number increases. Figure 8 shows the real and
imaginary part of the second modes at Re = 5 x 105

as a function of a for various Mach numbers. Figure
8 a) shows that Re{c} of the second modes seems to
reach a finite limit as Mach number increases. Figure
7 a) and 8 b) both indicate that for a fixed Reynolds
number, say Re = 5 x 105, as Mach number increases,
the maximum Im{c} first increases, reaches a maxi-
mum at certain Mach number, and then decreases. The
Mach number corresponding to the maximum Im{c} at
Re = 5 x 105 is about 8. For Re = 106, the Mach num-
ber is close to 10. Notice that this Mach number is
around 40 in the inviscid limit as shown in Fig. 12
of [21]. We therefore see that as Reynolds number in-
creases, the most unstable Mach number for the second
mode instability also increases, but has a finite limit.
For a fixed Reynolds number, the Mach number effect
is in good agreement with the trend observed in other
researches which emphasize on the hypersonic limit of
the stability problem as mentioned in [21], that is, a
general feature of hypersonic flow stability is a trend
towards less unstable flows. During the search for the
instabilities over a range of Mach numbers, first mode
instability is also found at Re - 106. The small region



enclosed by the dashed line in Fig. 7 b) is the region
where the first modes are less stable then the second
modes. The first mode instability is discussed later.

Effects of Three-Dimensional Disturbances

The effects of wave angles on the second modes are
illustrated in Fig. 9 and 10 at Mach 5 and Mach 10
for Re = 106. Figure 9 shows the phase velocity con-
tours as a function of wave number a and wave an-
gle \l>, which is tan-1(P/a), at Mach 5 and Mach 10.
One sees that as wave angle increases for a fixed wave
number a, both Im{c} and Re{c} decreases. Figure
10 shows the imaginary part of the second mode as
a function of wave number for different wave angles
at Mach 5 and Mach 10 respectively. These figures
show that three-dimensional waves are generally more
stable then two-dimensional waves with an exception
shown in Fig. 10 a) that there is a small range of
wave number a in which three-dimensional waves with
wave angles around 30° are more unstable than the
two-dimensional waves. This phenomenon, however, is
not seen for Mach 10. Therefore, Couette flow second
modes resemble boundary layer second modes in this
respect.

First mode instability

Although unstable first modes are not observed in
the inviscid limit by Duck et al. I21', some first modes
are shown to be neutral at certain range of wave num-
bers as shown in Fig. 11 a) of [21]. The range of
wave numbers in which first modes are found to be less
stable than the second modes as shown in Fig. 7 b)
seem to coincide with the ranges where neutral first
modes are found in the inviscid limit. Figure 11 shows
the curve fitted maximum Im{c} for a range of Mach
numbers corresponding to both first modes and second
modes at Re = lQ6,/3 = 0. One sees that first mode
instability is much weaker than second mode instabil-
ity. Furthermore it occurs in a much smaller range
of Mach numbers and wave numbers. The effects of
Reynolds number on the first mode instability is illus-
trated in Fig. 12 for MO, = 2.9, a = 2.5. We see that
viscous instability exists for the first modes. However,
the effect of viscosity does not seem to be solely re-
sponsible for the instability since as Reynolds number
further decreases, the instability disappears. This ex-
plains why the unstable first modes are not observed
in Fig 7 a). The effects of wave angle for first modes
at Moo = 2.9, Be = 106 is shown in Fig 13 for wave
number a ranging from 0 to 3. When the wave num-
ber a is fixed, we see in general that both Im{c} and
Re{c} increase as wave angle ̂  increases. However, at
a = 2.5, the first modes behave like 2D modes since

Im{c} decreases with wave angle. Although the first
modes for Couette flow are 3-dimensional in general,
the three dimensional effects seem to be weaker than
those observed for boundary layer first modes by Mack
[2]

Effects of Wall Cooling

The effects of wall cooling on the first and second
mode instability for Couette flow deviate from Mack's
results for boundary layer. In the case of boundary
layer, first modes are stabilized by wall cooling while
second modes are destabilized. The effects of wall cool-
ing on the Couette flow first modes are shown in Fig. 14
where the maximum Im{c} (corresponding to a range
of wave numbers) for M^ — 2.5, Re = 106,/9 = 0 is
plotted against the ratio of the lower wall tempera-
ture and the adiabatic lower wall temperature. With
the weak wave angle effects not accounted, the first
modes are first destabilized and stabilized by wall cool-
ing, unlike the boundary layer first modes. The effects
of wall cooling on the second modes are shown in Fig.
15 for MOO = 5.0, Re = 5 x 105. The second modes are
first destabilized and then strongly stabilized as Tw de-
creases. The different response of the Couette flow first
and second modes to wall cooling from their boundary
layer counterparts comes from the main flow profiles.
Nontheless, the instability mechanisms await further
theoretical explanation.

6 Conclusion

The linear stability of compressible plane Couette
flow has been investigated numerically. Two unsta-
ble modes have been found. The inviscid first modes
are only unstable for a small range of Mach numbers
and wave numbers. The inviscid second modes, on
the other hand, is the dominant instability and un-
stable for a large range of Mach numbers and wave
numbers. The characteristics of the inviscid second
modes have been investigated in more details. The
critical Reynolds numbers for Mach 5 and Mach 10 are
found to be around 90,000 and 260,000, respectively.
We have also shown that the inviscid second modes
are in general more unstable when the disturbance is
two-dimensional, while the first modes are more unsta-
ble for oblique waves. Viscous effects are stabilizing
for the second modes. Viscous instability exists for the
first modes. As for the Mach number effects, the trend
that has been observed is that the second modes are
destabilized first and then stabilized as Mach number
increases. The range of Mach numbers which have the



second mode instability expands with Reynolds num-
ber but remains finite. Reducing the lower wall tem-
perature destabilizes the first modes in general. The
second modes get destabilized and then stabilized as
Tw decreases. As mention previously, this work is the
first step towards the understanding of stability and
transition for compressible flows. We will next focus
on the stability of hypersonic flow over blunt body. In
attacking the problem, we will use linear stability tools
developed and validated in this work as well as a DNS
code by Zhong '22' and eventually a PSE code.
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Figure 1: Phase velocity spectrum at MOO = 2.0, Re =
2 x 10s,a = 0.1 and N=100: a) comparison between
2FD and 4FD, b) comparison between 4FD and SC,
c) Duck et al's result at the same conditions.

Figure 2: Eigenfunction (G) of the least stable mode
(the first mode) resolved by the 4FD and SC methods
at MOO = 2.0,Re = 2 x 105,a = 0.1 and N=100.
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Figure 14: The effects of wall-cooling on the first mode
instability. Mx - 2.5,Re = 106,0 = 0.0.

0.0010

Imfc)

0.3 0.4 0.5 0.6 0.7 08 0,8 1.0
He(c)

Figure 15: The effects of wall-cooling on the second
mode instability. MOO = 5.0, Re — 5 x 105.

16


