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Abstract

This paper is concerned with time-stepping numer-
ical methods for computing stiff semi-discrete systems
of ordinary differential equations for transient hyper-
sonic flows with thermo-chemical nonequilibrium. The
stiffness of the equations is mainly caused by the vis-
cous flux terms across the boundary layers and by the
source terms modeling finite-rate thermo-chemical pro-
cesses. Implicit methods are needed to treat the stiff
terms while more efficient explicit methods can still
be used for the nonstiff terms in the equations. For
additively split autonomous differential equations in
the form of u' = f ( u ) + g(u), three different semi-
implicit Runge-Kutta methods have been derived and
tested in previous papers, where / is treated by ex-
plicit Runge-Kutta methods and g is simultaneously
treated by three implicit Runge-Kutta methods. The
coefficients of up to third-order accuracy have been de-
rived such that the methods are both high-order ac-
curate and strongly A-stable for the implicit terms.
However, these semi-implicit Runge-Kutta methods for
the autonomous systems cannot be extended to non-
autonomous systems of u' = f ( t , u) + g(t, u) because
of the coupling between the / and g terms in the split
Runge-Kutta methods. In this paper, we derive and
test three different semi-implicit Runge-Kutta schemes
of up to third-order accuracy for the non-autonomous
differential equations using the A-stability and accu-
racy conditions with four stages. The new schemes
have been tested in computations of unsteady reactive
flows with explicit time-dependent terms.

Introduction

This paper is concerned with numerical methods for
computing stiff equations for transient hypersonic flows
with thermo-chemical nonequilibrium. This work is
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motivated by our research in the direct numerical sim-
ulation of on the stability and transition of hypersonic
boundary layers involving shock interactions and real
gas effects'1' 2l In addition to the effects of viscos-
ity, heat-conduction, and diffusion, hypersonic flows
often contain nonequilibrium processes of thermal ex-
citations and chemical reactions because of high gas
temperature and high speeds. One of the major diffi-
culties in computing such flows is the stiffness of the
governing equations in temporal integrations.

The stiffness is mainly caused by the viscous stress
and heat flux terms in the boundary layers and by the
source terms modeling finite-rate thermo-chemical pro-
cesses. The viscous terms across the boundary layer are
stiff because fine-grid spacing is used in the direction
normal to the wall. Finite difference approximation to
the viscous equations with these small-size grids lead
to stiff systems of ordinary differential equations. The
source terms are stiff because the chemical and ther-
mal nonequilibrium processes have a wide range of time
scales, some of which are much smaller than the tran-
sient flow ones. As a result, if explicit methods are used
to integrate the stiff governing equations, the computa-
tions will become very inefficient because the time-step
sizes dictated by the stability requirements are much
smaller than those required by the accuracy consider-
ations.

In order to remove the stability restriction on the
explicit methods, implicit methods need to be used.
For computing multi-dimensional reactive flow, global
implicit methods are seldom used because it takes a
prohibitively large amount of computer time and large
memory to convert full implicit equations. Practical
implicit methods for multi-dimensional reactive flow
calculations include the fractional step method (or
time-splitting method) and the additive semi-implicit
method.

This paper is concerned with the additive semi-
implicit methods, which additively split the ordinary
differential equations into stiff and nonstiff terms. The
stiff terms are treated implicitly while the nonstiff
terms are treated explicitly. The semi-implicit meth-
ods are more efficient than the full implicit methods



for reactive flow computations because the stiff terms
can be easily separated from the rest of the equa-
tions. The standard semi-implicit method for direct
numerical simulation of incompressible turbulence is
to use the implicit Crank-Nicolson method for the vis-
cous terms normal to the wall and the explicit Adams-
Bashford method for the rest of terms'3'4' 5> 6 '7l

(ABCN method). For compressible reactive flow, a
semi-implicit MacCormack method'8' 9> 10> u' has been
used to compute the chemical source terms implicitly
while the fluid terms are computed explicitly.

The temporal accuracy of these two methods, how-
ever, is usually second-order accurate at most. To ob-
tain simultaneously high-order accuracy and good sta-
bility properties, the simultaneous coupling between
the explicit and implicit terms need to be considered.
This can be accomplished by the additive semi-implicit
Runge-Kutta methods. The derivation of an addi-
tive semi-implicit method with both high accuracy and
good stability is difficult because of the coupling be-
tween the explicit and implicit terms. The first ad-
ditive Runge-Kutta methods for stiff ordinary differen-
tial equations were studied by Cooper and Sayfy'12' 13'.
They derived additive Runge-Kutta methods to solve
a system of differential equations in a form of x' =
J(t)x + g(t,x), where the linear term on the right hand
side of the equation was stiff.

In previous papers, Zhong'14' 15' derived and an-
alyzed three different sets of additive semi-implicit
Runge-Kutta methods for additively split ordinary dif-
ferential equations in the form of u' — f(u) + g(u),
where the nonstiff term / is treated by explicit Runge-
Kutta methods, and the stiff term g is simultaneously
treated by three implicit Runge-Kutta methods. The
three implicit methods for g are a diagonally implicit
Runge-Kutta method and two Rosenbrock linearized
Runge-Kutta methods'16' with different ways of eval-
uating Jacobian matrices. The semi-implicit Runge-
Kutta methods are derived and analyzed based on
the general form of implicit Runge-Kutta formulas.
The fully implicit and Rosenbrock semi-implicit Runge-
Kutta methods are both high-order and strongly A-
stable for the implicit terms. The strongly A-stable
methods are needed for numerical results to reach cor-
rect asymptotic values for very stiff problems. These
new schemes have been tested in model equations and
in reactive hypersonic flow computations'15'.

These additive semi-implicit Runge-Kutta methods,
however, cannot be applied to non-autonomous sys-
tems relating to unsteady reactive flows with explicit
time terms in the equation of u' = /(£,u) + g(t, u) due
to the coupling between the / and g terms. An ex-
ample of such flow is the unsteady reactive flow with

time-dependent perturbations or boundary conditions.
The objective of this paper is to extend the previous
work of semi-implicit Runge-Kutta methods for the
autonomous systems to the non-autonomous systems,
where the nonstiff f ( t , u ) term is treated by explicit
Runge-Kutta methods, and the stiff term g(t, u) is si-
multaneously treated by three implicit Runge-Kutta
methods. The three implicit methods for g(t,u) are
a diagonally implicit Runge-Kutta method and two
Rosenbrock linearized Runge-Kutta methods'16' with
different ways of evaluating Jacobian matrices. The
coefficients are derived such that the new methods are
simultaneously high-order accurate and A-stable for
the implicit term. We found that the semi-implicit
Runge Kutta method for non-autonomous differential
equations requires four stages to obtain third-order ac-
curacy due to the strong coupling among the coeffi-
cients of 18 accuracy and stability conditions. The new
schemes are tested in the computations of unsteady re-
active flows with explicit time-dependent terms.

Semi-Implicit RK Methods

General Formulas of Semi-Implicit RK Methods
for Non-Autonomous Systems

A general partial differential equation for reactive
flows can be written as

dt
+ (1)

where U is the conservation variables, Fj is the flux
terms, and W is the source term due to finite-rate reac-
tions. In the semi-discretization approach, the spatial
derivatives in the governing partial differential equa-
tions are first approximated by spatial discretization
methods. The spatial discretization leads to a sys-
tem of first-order ordinary differential equations. For
systems of unsteady flow with time-dependent forcing
terms or boundary conditions, the semi-implicit differ-
ential equations are non-autonomous, i.e.,

(2)

where u is the vector of discretized flow field variables.
The right hand side of the differential equation above is
additively split into two terms, g ancTf7 where g is the
vector resulting from the spatial discretization of the
stiff terms, and f is the vector resulting from the spatial
discretization of the rest of the nonstiff flow equations.
In general, the splitting of f and g terms is not unique.



The multiple time scales in the flow equations
and the difficulty in computing fully implicit multi-
dimensional flow equations for reactive flow calcula-
tions require that the stiff term g to be computed im-
plicitly and the non-stiff term / to be computed explic-
itly. Because of the coupling between / and g, however,
a straight-forward combination of an explicit and an
implicit time-stepping method will not maintain the
original accuracy of the individual methods. There-
fore, the derivation of high-order semi-implicit meth-
ods needs to simultaneously consider the coupling be-
tween the implicit and explicit terms in both stability
and accuracy analysis. The stability conditions in the
semi-implicit method should be limited by the explicit
terms only, i.e., the coupled method should be A-stable
for the implicit terms when the explicit terms satisfies
the CFL condition (or similar conditions). Therefore,
we use semi-implicit Runge-Kutta methods to achieve
simultaneous high-order accuracy and good stability.

The Runge-Kutta methods are one-step methods
involving intermediate stages to achieve high-order
accuracy'17' 18'. A general r-stage additive semi-
implicit Runge-Kutta method integrates Eq. (2) by si-
multaneously treating f explicitly and g implicitly:

un+1 = (3)
.7 = 1

(4)

i-l

I - haiJ(tn + qih, un + ]£ dyky)

= hf(tn + nh,un
i-l

i-l

l, U (6)

Where J = ^ is the Jacobian matrix of the stiff
term g. The Rosenbrock additive semi-implicit Runge-
Kutta method given by Eqs. (5) and (6) is similar to
the implicit methods used in computational fluid dy-
namics and is much more efficient than the diagonally
implicit version given by Eqs. (3) and (4). But, for
some strongly nonlinear problems, the nonlinear diag-
onally semi-implicit method given by Eqs. (3) and (4)
is necessary because it is more stable than the Rosen-
brock additive semi-implicit Runge-Kutta method for
nonlinear problems.

Therefore, three versions of the additive semi-
implicit Runge-Kutta methods are derived to be both
high-order accurate and strongly A-stable for the im-
plicit terms, i.e.,

Method A: "Fully implicit" additive semi-implicit
Runge-Kutta method given by Eqs. (3) and (4).

Method B: Rosenbrock additive semi-implicit Runge-
Kutta method given by Eqs. (5) and (6), and dij =

where h is the time-step size, and QJ, by, cy, TJ, Sj,
and Wj are parameters to be determined by accuracy
and stability requirements. Because g is treated by a
diagonally implicit Runge-Kutta method, Eq. (4) is a
nonlinear equation at every stage of the implicit calcu-
lations if g is a nonlinear function of u. The compu-
tations of this method are relatively inefficient, since
nonlinear solvers are required to solve such nonlinear
equations.

A more computationally efficient additive semi-
implicit Runge-Kutta method is a semi-implicit exten-
sion of the Rosenbrock Runge-Kutta method"6',

un+l _ (5)

Method C: Rosenbrock additive semi-implicit Runge-
Kutta method given by Eqs. (5) and (6), and <ft = «i,
and dij = cy.

The rth-stage additive semi-implicit Runge-Kutta
methods are termed ASIRK-rA methods, ASIRK-rB
methods, and ASIRK-rC methods for Methods A, B,
and C respectively.

Linear Stability Conditions

The parameters of the additive semi-implicit Runge-
Kutta methods are chosen based on both stability and
accuracy requirements with simultaneous coupling be-
tween the explicit and implicit terms. The use of an
implicit method for the stiff term g permits a larger
time step than that allowed by a fully explicit method.



Unlike the explicit Runge-Kutta methods, whose sta-
bility conditions are the same for different choices of
parameters as long as they have the same stages and
accuracy, the stability properties of the additive semi-
implicit Runge-Kutta methods of the same stages are
different for different choices of parameters because of
the coupling between the f and g terms.

For simplicity, only a linear stability analysis is con-
ducted in this paper for a special kind of test functions.
The stability condition for an additive semi-implicit
time-stepping scheme is analyzed by considering a sim-
plified linear model equation:

du- (7)

In order to obtain a correct asymptotic decay for stiff
terms, it is desirable to have a strong A-stability (L-
stability) condition for the semi-implicit schemes, i.e.,

lim \"t{hXf,hXa}\ = 0

The strong A-stability for the implicit term assures
that the numerical solutions approach the correct so-
lutions as step sizes increase. For the three additive
semi-implicit Runge-Kutta methods, the strongly A-
stable condition can be obtained from Eqs. (8), (9),
and (11) as follows:

(12)

where A/ and \g represent the eigenvalues of |£ and
f* in Eq. (2). They are complex parameters satisfying
Re{Xf} < 0 and Re{\g} < 0 respectively. In gen-
eral, |A9| is much larger than |A/| for stiff equations.
Though Eq. (2) cannot be reduced to this model equa-
tion if the Jacobians of f and g do not commute, Eq.
(7) is used as the first step in analyzing the linear sta-
bility properties of the additive semi-implicit Runge-
Kutta methods. Further studies are needed to analyze
the general stability properties of the additive Runge-
Kutta methods using the nonlinear stability analysis
by Hairer, Bader, and Lubich[19l

Substituting Eq. (7) into any of the three additive
semi-implicit Runge-Kutta methods leads to the same
equation for the characteristic root as follows:

(8)

where

i-i
(13)

For practical reactive flow problems, it is important
that the intermediate variables at each stage of the
Runge-Kutta computations maintain their physical
meanings, i.e., it is not acceptable to have negative
temperatures in an intermediate stage even if the final
results are positive. Therefore, we impose the follow-
ing additional condition on the additive semi-implicit
Runge-Kutta methods:

CH > 0 (14)

'j-=ihikj) + hXg(l + £)*." i djkj) Accuracy Conditions

t = l , - - - , r ) (9)

where 7 = 7{ftA/, h\g} is a function of /iA/ and h\g.

An A(a) stability region of a semi-implicit method
in the complex plane of h\/ is defined as the region
where

Additive semi-implicit Runge-Kutta schemes are de-
rived to be high-order accurate with the simultaneous
coupling between the explicit and implicit terms. Tay-
lor series expansions lead to the following accuracy con-
ditions if four steps are kept as a general case:

1st order;

(15)
\-y{hXf,h\g}\<l (10)

for hXf within the region and for all h\g within a wedge
bounded by [TT — a, ?r-t-a] in the complex plane. When
a = 7T/2, the semi-implicit method is A-stable for h\g.

2nd order;

_ i_
~~ 2 (16)



-1- w2s2 4- W3s3 +
-I- 632)

(17)
- 642 4- 643) = \ (18)
3i +c32)
c42 + c43) = i

4-

3rd order;

(20)
(21)

!°^/ ' w/i5\'--ji°i ' "--o^0* (eye)\
C42s24-c43s3 +a3s4) = i

+ £2(021 4- a2)J 4- w3[aiC3i
4-c32(a2 4- 021) 4- a3(c3i 4- c32 4- a3)] . .

4-C42(a2 + c2J) 4-C43(c31 4-C32 4-a3)
+a4(c4i 4- c42 4- C43 + 04)] = I

(24)

= I (25)

4- c2i) + c4262i 4-

4- 642 -I-

+642

4-

4- 4- a3)
+c41(63i 4- 632) 4- a4(64i 4- 642 4- 643)] = 5

4-

4-

a4r4) = |
si

+642s2 4- 643s3) = ^

= i (26)

(27)

(28)

(29)

(30)

Method A :

c32 + a3)2

C42 4- C43 -I- 04)2 = |

-f a2)2

W

-I- a2) 4- a>3s3(c31 + c32 4- a3)i -I- a2) 4- a>3s3(c31 + c32 4- a3) , .
+W4S4(C41 + C42 + C43 + 04) = I

2i - 3 3 1 c32 + a3) , ,
4-W4S4(c41 + C42 + C43 4- 04) = i ^ '

For up to second-order accuracy, direct combination
of an explicit and an implicit Runge-Kutta methods
will result in an additive semi-implicit Runge-Kutta
method with the same order of accuracy as long as
the two schemes have the same set of Wj. However,
for accuracy equal to or higher than third order, the
direct combination of an explicit and an implicit meth-
ods will likely be only second-order accurate because of
the coupling between the explicit and implicit terms.

We search for the optimal parameters in the addi-
tive semi-implicit Runge-Kutta schemes by simultane-
ously imposing the stability and accuracy conditions
discussed above. To be consistent with the explicit
Runge-Kutta methods, the coefficients for the t terms
are set to be

i-l

(37)

for all the three methods. But for the implicit t terms,
method A is different from method B and C. For
method A,

i-l

3 = 1

(38)

For method B and method C,

Si = (39)

The reason for this is obviously that if equation (38)
were available for method C, then combine Equations
(21) and (35) we have

Method B :
c32)2 + w4(c4i + c42 4- c43)2 = | (33)

-032)

Method C :
W2(cli 4- 2a2c2i) 4- W3[(c31 4- Cs2)2 4- 2a3(c3i 4- c32)
4-a;4[(c4i 4- c42 4- c43)2 4- 2a4(c4t 4- c42 4- c43)] = |

= 0 (40)

That means there are no solutions that satisfy the con-
ditions of LJi > 0 and at > 0. For method B, si=0, but
a: is required to be at > 0 for the stiff terms.

The difference between the set of accuracy equations
derived for conventional explicit Runge-Kutta scheme
and for the explicit part of the semi-implicit scheme
differs only in the additional equations generated by



the third-order cross terras as a result of the coupling
between the explicit and implicit terms. And similarly
the accuracy equations for implicit part of the semi-
implicit method is same as the conventional implicit
method for first- and second-order schemes only, ex-
cluding third-order schemes.

Since it is difficult to obtain close form solution of
the accuracy and stability equations for a coupled semi-
implicit scheme, a numerical searching method is used
to find the optimal parameters. A computer program
were developed to conduct extensive search for the
optimal parameters numerically. The computational
search makes it possible to locate the optimal param-
eters to satisfy both the stability and accuracy condi-
tions for the methods.

First-Order Additive Semi-Implicit Runge-
Kutta Methods

The expressions for the first-order methods are
ASIRK-1A Method:

ASIRK-2B Method:

= h{f(tn, u") + g(tn + si/i, u" + aiki)}
u = (41)

[I - hai 3(tn, u")] ̂  = A{f (tn, u") + g(tn, u")}
[I - /ia2J(tn,u")]k2 = h { f ( t n + r2/i,u"

r2h, un g(*n , u

(45)
un+l =

ASIRK-2C Method:

[I - AaiJ(tn> u")] k! = h{f(tn, u") + g(t«, u")}
[I - /ia2J(tn + s2/i,un + c2iki)]k2 = h{f(tn+ ,.R.

,n . „_.!,. u \*G)

Similar to the first-order case, the coefficients for the
second-order methods are the same as the correspond-
ing coefficients for a autonomous systems, and the co-
efficients are the same for all three methods. Ref.[15]
shows two sets of coefficients:

Case I:

ASIRK-1B and ASIRK-1C Methods:

[I - hat. J(tn, u")] k! = h{t(tn, u") + g(tn, u")}
(42)

Case II:

U>2 =

°2 = 5

The coefficients are the same as the autonomous sys-
tems derived in Ref. [15]:

= ai = si = 1 (43)

The coefficients are the same for Methods A, B, C for
the first-order case. The stability condition for the
first-order additive semi-implicit Runge-Kutta meth-
ods is the same as first-order explicit Runge-Kutta
methods for ftA/ and is strongly A-stable for h\g.

Second-Order Additive Semi-Implicit Runge-
Kutta Methods

The expressions for the second-order methods are:

ASIRK-2A Method:

= h{t(tn,un) + g(tn + 81h,un'
k2 = h{f (tn

un+l _ un +

,u" + &2:

+ w2k2

W2 = \

02 = 1 -

631 = 1

CM = >/2 - 1

where rt and Si are given by Eqs. (37) and (38) or (39)

The methods are second-order accurate and strongly
A-stable for the implicit term h\g.

Third-Order Additive Semi-Implicit Runge-
Kutta Methods

ASIRK-3A Method

k2 = h{t(tn +r2h,un

+g(*n + S2/l, U71 + C2lk! + 02k2)}
k3 = h{f(tn + r3/i,un + bsiki + 632k2)

+g(tn + s3/i, un + csiki + c32k2 + a3k3)}
k4 = h{f(tn + r4h, un + 64iki + 642k2 + 643k3)

-I- C4iki + C42k2 -I- c43k3 + a4k4)}
-|- u;2k2 + W3k3 + W4k4

(47)



ASIRK-3B Method

[I - ha! J(tn> u")] kt = h{f(tn, u") + g(*Bl u»)}
[I - /ia2J(fn, u")] k2 = h{f(tn + raft, u" +

[I - J»o3 J(tn> u")] k3 = fc{f (*n 4 rah, u" 4-
4-632k2) 4- g(in 4- s3/i, u" 4- c3iki + c32k2)}

[I - ha43(tn, u")] k4 = h{t(tn + r4h, un + 64iki
+642k2 4- 643k3) 4- g(in 4- s4/i, u

+c42k2 +c43k3)}
un+1 = u" 4- u»iki 4- w2k2 4-

ASIRK-3C Method

The searching procedure for the numerical solutions
is as follows: First, ui, w2 and w4 are chosen as free
parameters to obtain w3 from Equation (15). Then,
632, &42 and 643 are chosen as free parameters to deter-
mine r2, r3 and r4 from Equations (16),(20) and (24).
For method B and method C, si-s3 are determined by
Si = ri~ for method A, another parameter s4 is chosen
to solve Equations (17),(21) and (30) for si, s2 and s3.
Next, Equations (22),(23),(28) and (29) are solved for

(48) Ql, o2, o3 and a4 with c32, c42 and c43 as free param-
eters. Finally, the solutions are checked by stability
Equation (10) and (14). If the solutions do not satisfy
those conditions, the parameters are changed to repeat
the procedure until all Oi > 0. The searching range for
free parameters of Wj and s4 is from 0 to 1. The range
for bij and Cij is from -2 to 2.

The parameters for the explicit and implicit terms
are different for the three versions of ASIRK3 methods
because the explicit/implicit coupling.

[I - hai3(tn,un)] kj = h{f(tn, u") 4 g(tn, u")}
[I - ha2J(tn + s2/i, u" 4 c2ik!)] k2 = h{f(tn + r2h,

un + 62iki) 4 g(tn + s2/i,un + c2iki)}
[I - haz 3(tn + s3h, u" 4

h{t(tn + r3h,u
n, u

I - /ia4 J(<n 4- s4/i, un 4-
= h{f(tn + r4/i, u" 4

+ g(*n 4- s4/i, u" 4-
n+i _

4- C 3 2 2 3 =
+ 632k2)
4- c32k2)}

+ c42k2 4- c42k3)] k4
4 642k2 4- 643k3)
c42k2 4- c43k3)}

ASIRK-3A Method:

(49)

u _

We use four stages in ASIRK-3 to get third-order
accuracy. In fact, if three-stage ASIRK schemes were
used, there would be 18 undetermined parameters for
the third-order method. After satisfying the accuracy
and strong A-stability conditions, there were only two
free parameters for the ASIRK-3 methods. If u>i and w2
were chosen as free parameters, then the third-order ac-
curacy equations and one stability equations would be
solved exactly. We searched wi and w2 from 0 to 1 and
found that no solution satisfies all a< > 0. For a given
set of u>i and w2, the accuracy conditions lead to either
ai or a3 to be zero. This is not an acceptable solution
because the resulting ASIRK-3 schemes do not satisfy
stability condition (12). That means if a three-stage
additive semi-implicit Rungge-Kutta scheme was used
to obtain third-order accuracy for non-autonomous dif-
ferential equations r one stage--whould be a iull explicit
scheme. In order to get the solutions that satisfy the
third-order accuracy and stability conditions, mean-
while all Ci are positive, four-stage semi-implicit RK
schemes are needed to add more parameters to get the
third-order accuracy scheme.

wi = 0.13
w3 = 0.52
62i = 0.338170
632 = 0.779584
642 = 0.200000
ai = 1.174810
03 = 0.158717
021 = -0.293999
c32 = 0.200000
c42 = 1.780818

ASIRK-3B Method:

w3 = 0.525
621 = 0.309921
632 = 0.591232
642 = -0.55000
ai = 0.130476
03 = 0.067873
c2i = 0.160000
c32 = 0.400000
c42 = -0.500000

ASIRK-3C Method:

<J3 = 0.525

w2 = 7
u* = T5
63i = -0.019084
&« = -0.300000
&43 = 0.300000
a2 = 0.526766
a4 = 0.100000
c3i = 0.149135
c4i = -1.130818
c43 = -0.500000

63i = 0.169758
641 = -0.37000
b43 = 1.14999
o2 = 0.052913
a4 = 0.424531
c3i = 0.361513
C4i = -0.974181
c43 = 1.000000

= 7

=



b2i = 0.324692
632 = 0.767118
642 = -1.000000
ai = 0.170366
a3 = 0.041351
c2i = 0.150000
c32 = 0.706262
c42 = -1.000000

631 = -0.000745
641 = 0.300000
643 = 0.890000
a2 = 0.107914
a4 = 0.029692
c3i = 0.033636
cti = 0.314661
c43 = 0.696340

The parameters with longer significant digits can be
obtained from the authors. The methods using the
coefficients above are third-order accurate and strongly
A-stable for the implicit term h\g.

Test Cases

Systems of Ordinary Differential Equations

In order to check the temporal accuracy of semi-
implicit Runge-Kutta method derived in this paper,
two cases of systems of ordinary differential equations
are tested.

Case I Non-stiff Systems of ODE

First, we consider a system of ordinary differential
equations as follows

du
dt

where

= Au + f (t) (50)

0 1 0
0 0 1
-2 -5 -4

f =
0
0

-4sin(t) -2cos(t)

Table 1: Temporary Accuracy of the ASIRK-
2A and ASIRK-3A Methods(t = 2.5, and uex -
-0.80114362)

RK-3 ASIRK-3A ASIRK-2A
At

h=0.25
h/2
h/4
h/8
h/16
h/32

es
1.26D-3
1.53D-4
1.88D-5
2.33D-6
2.90D-7
3.62D-8

#3
8.2
8.1
8.1
8.0
8.0
-

es
1.40D-3
1.96D-4
2.58D-5
3.29D-6
4.15D-7
5.20D-8

R3
7.1
7.6
7.8
7.9
8.0
-

62
1.11D-3
2.65D-4
6.50D-5
1.61D-6
4.01D-7
l.OOD-7

R2
4.2
4.1
4.0
4.0
4.0
-

Table 1 shows the results of the grid refinement
study. The results of 2nd-order and 3rd-order ad-
ditive semi-implicit Runge-Kutta scheme (ASIRK-2A
and ASIRK-3A) using the same time steps are given
in this table. As a comparison, the results of conven-
tional third-order explicit Runge-Kutta method(RK-
3) are also listed in the table. Because this case is a
non-stiff system of ordinary differential equations, the
right hand part of the equations are treated as the
part g in equation (2). In another word, T-J and 6jj
in Eq.(47) are set to zero, the equations are calculated
with implicit method. Therefore there are some dif-
ference between the 3rd-order explicit RJK method and
semi-implicit RK method. Just as predicted by equa-
tion (53), the value of Rp gives out the temporal accu-
racy of the schemes. Table 1 shows that the ASIRK-2A
is second-order accuracy and the ASIRK-3A using four
steps is third-order temporal accuracy.

Case II Systems of ODE with Stiff Terms

Then we tested the scheme of ASIRK-3C for systems
of ordinary differential equations with stiff terms given
by

= A(t)u [B(t)u + fa(t)] (54)

the initial condition is u(£=0) = {1,0,—!}.

Because this simple case has an exact solution of
ui = cos(t), we can evaluate the temporal order of
accuracy of semi-implicit scheme by the refinement of
time steps. The errors of numerical solution u/, is

where

A =
12.2 5sin(t) sin(4f)

4 15 2cos(2i)
3 4cos(3t) 7

fi =
cos(t)
2 sin(t)

1
(55)

(52)

where e^ depends on the time step h. For a p-th order
numerical method,

- = Rp = 2" (53)

B =
42.2 50.1 -42.1sin(2i)
-66.1 -58 58.1 cos(2i)
26.1 42.1 -34i°-1

£2 =
sin(t)
cos(t) (56)

where e is a small parameter chosen to be 0.01. The
results of ASIRK-2C and ASIRK-3C are listed in Table
2. The exact solution uex used in equation (52) in



this case is obtained from the Richardson extrapolated
solution at the smallest time step. The results show
that the ASIRK-3C method is third-order accuracy.

Table 2: Temporary Accuracy of ASIRK-2C
and ASIRK-3C Method for Stiff Equations(£ =
0.3967, and uex = 0.310395394964)

ASIRK-3C ASIRK-2C

At
h=0.001
h/2
h/4
h/8
h/16
h/32
h/64

63
0.12

2.14D-2
2.87D-3
2.71D-4
2.53D-5
2.54D-6
2.77D-7

R3
5.6
7.5
10.6
10.7
10.0
9.2
-

£•2
0.47

4.51D-2
1.14D-2
2.86D-3
7.15D-4
1.78D-4
4.47D-5

#2
10.4
3.9
4.0
4.0
4.0
4.0
-

Two-Dimensional Viscous Reactive Flows

After validating the accuracy-of the present ASIRK-
3 method, we apply these schemes to a two-dimensional
viscous flows over a circular cylinder with thermo-
chemical nonequilibrium. There are two features of
viscous reactive flows that are stiff for time integra-
tion, one is the stretched grid in the viscous boundary
layer near the wall, and another is the source terms due
to the finite rate thermal and chemical processes. The
ASIRK-3 methods derived in this paper are applied to
these stiff equations. The free stream conditions are

CW2 = 0.927
UOQ = 5590m/s
Poo = 2910pa

CN = 0.073
Too = 1833tf

Tw = WOOK

To resolve the viscous boundary layer on the wall,
the grids are stretched in the direction normal to the
wall. The total number of grid points used in numeri-
cal calculations is 42 x 142. Fig.l shows the structured
grids used in the calculation. The Navier-Stoke equa-
tions are solved by finite volume method. A second-
order TVD scheme is used for the descretization of spa-
tial fluxes and the 4-stage semi-implicit Runge-Kutta
(ASIRK-3C) method is used to integrate the equations
in time. The source terms due to thermo-chemical
nonequilibrium, as well as the fluxes in the direction
normal to the wall, are treated implicitly. Fig. 2 shows
the pressure contours of the mixture gas. Fig.3 and
Fig.4 are the distributions of pressure along the stagna-
tion line and along the wall, respectively. Fig.3 shows
that the pressure in the shock layer increases about two
order-of-magnitude as compared with the freestream
conditionis. The change of pressure indicates that the
thickness of the shock front is about two grids spatial

distance. Fig.4 shows that the highest pressure region
on the wall is near the stagnation line. Figs.5-8 are the
species concentrations of N-z and N. Fig.5 is the distri-
butions of mass fractions along the stagnation line and
Fig.6 is along the wall. The figure shows that N-Z is
dissociated behind the bow shock due to high temper-
ature, but it recombines in the boundary layer because
of the low wall temperature. Fig. 7 and Fig. 8 are
contours of A^ and N mass fractions. The calculations
show that the new method is robust and accurate.

Conclusions

The additive semi-implicit Runge-Kutta methods of up
to third-order accuracy for non-autonomous differen-
tial equations have been derived and tested in this pa-
per. Unlike the methods for autonomous differential
equations, four steps are required to get third-order
temporal accuracy and every step is implicit for the
stiff terms. The temporal order of accuracy of the
four-stage additive semi-implicit Runge-Kutta meth-
ods have been validated by the refinement study of
time steps. The application of the third-order ASIRK
method to two dimensional thermo-chemical reactive
flow shows that the semi-implicit methods are efficient
and robust for the stiff differential equations.
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Figure 1: Computational Grids. Figure 3: Mixtured pressure on the stagnation line.
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Figure 2: Pressure contours of the mixtured nitrogen.
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Figure 5: Species concetrations on the stagnation line. Figure 7: Species contours of
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