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Numerical Simulation of Transient Hypersonic Flow 
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Using the Essentially Nonoscillatory Schemes 

Chien-Erh Chiu* and Xiaolin Zhong' 
University of California, Los Angeles, Los Angeles, California 90095 

Numerical simulation of transient hypersonic flows involving shock-wave-freestream-disturbance interactions 
is presented using the essentially nonoscillatory (ENO) schemes. The EN0 schemes were chosen for transient-flow 
simulations because they have high-order accuracy at extrema as well as in other parts of smooth solutions. First, the 
accuracy of the EN0 schemes was tested numerically by applying them to the computations of a one-dimensional 
linear model equation and to an oscillating plate problem using the two-dimensional Navier-Stokes equations. 
Then, the third-order EN0 scheme was used to compute the unsteady interaction of a freestream acoustic wave 
with a bow shock in hypersonic flow past a cylinder. The numerical results along the stagnation line were compared 
with linearized analytical solutions. The results show that the disturbance waves generated behind the bow shock 
are significantly amplified by the back-and-forth interactions and reflections of the acoustic waves. These results 
on the bow-shock-disturbance interactions will be useful in understanding the effects of the how shock wave on 
the receptivity of hypersonic boundary layers to freestream disturbances. 

Nomenclature 
= disturbance-wave amplitude 
= speed of sound behind the shock 
= specific heat at constant pressure 
= speed of sound ahead of the shock 
= distance between the shock and the body 
= total energy per unit volume 
= flux vectors 
= Mach number behind the shock 
= Mach number ahead of the shock 
= pressure behind the shock 
= perturbation variables 
= pressure ahead of the shock 
= components of the heat-flux vector 
= entropy 
= temperature 
= time 
= vector of flow variables 
= velocity components 
= vorticity 
= Cartesian coordinates 
= ratio of specific heats 
= wave perturbation variables 
= coefficient of thermal conductivity 
= viscosity coefficient 
= coefficients in linearized shock relations 
= density 
= viscous stress tensor 
= perturbed shock displacement 
= wave frequency 

= freestream variables 
= variables behind the shock. 
= variables ahead of the shock 
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Introduction 
ESEARCH on hypersonic flows has focused mainly on de- R veloping real-gas models and computing steady hypersonic 

flows, but the unsteadiness of hypersonic flows has not received 
serious attention. There are many practical problems where flow- 
field unsteadiness or instability can have strong effects on aerody- 
namic loads and heating rates to hypersonic vehicles.' Examples 
of such unsteady flows include flows around maneuvering hyper- 
sonic vehicles, the instability and transition of hypersonic boundary 
layers: unstable shock-on-shock interference heating in a hyper- 
sonic inlet? and the interactions of bow shock waves with free- 
steam disturbances in hypersonic flows past blunt leading edges! 
This paper deals with numerical simulation of such transient hy- 
personic flows. In particular, preliminary studies were conducted 
on the unsteady bow-shock-disturbance interaction problem using 
numerical simulations. 

The bow-shock-disturbance interaction problem originates from 
studies of the receptivity of hypersonic boundary layers to 
freestream disturbances. The receptivity, which refers to the pro- 
cesses by which the environmental disturbances initially enter the 
boundary layers and generate linear instability waves,5 is an impor- 
tant aspect of transition from laminar to turbulent states of bound- 
ary layers. For hypersonic flow past a blunt leading edge, the bow 
shock wave has strong effects on the stability and transition of the 
boundary layer behind the shock. The curved bow shock creates 
entropy and vorticity layers, which are eventually swallowed by the 
boundary layer. In addition, the unsteady interaction of a freestream 
disturbance wave with the bow shock produces three kinds of distur- 
bance waves: acoustic, entropy, and vorticity waves. These waves 
propagate independently toward the solid surface where the acous- 
tic wave is reflected from the wall. The reflected acoustic wave 
then propagates upstream and changes the waves behind the shock 
when it interacts with the shock from behind. These back-and-forth 
wave reflections and interactions cause considerable changes in all 
three disturbance waves behind the shock and raise the question of 
whether the bow shock wave is stable in such interactions. 

Morkovin4 assessed the bow-shock-disturbance interaction along 
the stagnation line using a one-dimensional linear analytical model. 
A general knowledge of the interaction process was obtained by this 
approximate analysis. However, this one-dimensional linear model 
can be applied only to the stagnation line with the assumption of 
uniform flow behind the shock where the actual flow is nonuni- 
form. Furthermore, the model does not explain how the vorticity 
field is affected by the wave interactions and reflections. Numeri- 
cal simulations are needed to study the complete two-dimensional 
flow properties of the bow-shock-disturbance wave interactions. 
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The simulations for such flows are difficult to accomplish because 
they not only need to capture the shock waves without spurious nu- 
merical oscillations but also need to resolve small-magnitude phys- 
ical fluctuations of the disturbance waves. The disturbance-wave 
computations require numerical methods with high-order accruacy, 
but the shock-capturing computations need to reduce to first-order 
accuracy at the shock to avoid numerical oscillations. As a result, 
an appropriate numerical method needs to have locally high-order 
accuracy in the smooth regions of the flowfields and to be non- 
oscillatory across shock waves. 

Among current high-resolution shock-capturing schemes, the es- 
sentially nonoscillatory (ENO) schemes6 are chosen for such com- 
putations because they have formally high-order accuracy in smooth 
regions of the flowfields and are nonoscillatory across shock waves. 
Though the total variation diminishing (TVD) schemes have been 
the most popular methods for hypersonic flow computations, they 
reduce to first-order accuracy at local extrema of solutions. As a 
result, the TVD schemes are most suitable for steady and moder- 
ately unsteady flow computations where the physical solutions do 
not contain many extrema, but they can be very numerically diffu- 
sive for computing oscillatory wave solutions. The E N 0  schemes 
were developed to improve the accuracy of the TVD schemes at 
the local extrema of smooth solutions. But the main drawback of 
the E N 0  schemes is that they are less stable for steady-flow com- 
putations because the TVD condition is not strictly satisfied in the 
EN0  schemes. Many modifications have been proposed to reduce 
the oscillations of the E N 0   scheme^.^-^ 

We continued to apply the E N 0  schemes to transient hypersonic 
flow  computation^.^ First, we quantitatively tested the numerical 
accuracy of the E N 0  schemes for solving model problems relevant 
to transient viscous flow simulations using a convection-diffusion 
equation and the two-dimensional Navier-Stokes equations. We did 
not attempt to conduct exhaustive tests to validate the accuracy of 
the E N 0  schemes; other test results for E N 0  schemes can be found 
in Refs. 3 and 10-15. Second, we computed a freestream acoustic 
wave interacting with the bow shock in front of a cylinder moving 
at a hypersonic speed. Inviscid flow in a perfect gas was assumed to 
focus the attention on the effects of bow-shock-disturbance wave 
interactions outside the boundary layer. 

Governing Equations 
The Navier-Stokes equations written in the conservation-law 

form in Cartesian coordinates are 

(1) 
BU aF, BF, aG, BG, -+-+-+-+-=o 
a t  ax ax ay ay 

where U = [ p ,  pu, pv,  elT and 

The viscous-stress and heat-flux terms are given by 

where the viscosity coefficient p is computed according to 
Sutherland's law; and the heat conductivity K is determined by as- 
suming a constant Prandtl number. 

Numerical Methods 
Both the Euler and the Navier-Stokes equations are solved by 

the E N 0  schemes using finite volume formulations.h.12 At compu- 

tational cell boundaries, the inviscid flux terms are computed by 
the high-order two-dimensional E N 0  reconstruction proposed by 
Casper"; the viscous-flux terms are computed by second- or forth- 
order-accurate fixed-stencil central difference schemes. The equa- 
tions are advanced in time using the explicit TVD Runge-Kutta 
schemes derived by Shu and Osher.'" Details of the numerical meth- 
ods can be found in Ref. 16. 

Numerical Tests of the EN0 Schemes 
Linear Convection-Diffusion Equation 

the accuracy of the E N 0  schemes: 
The following one-dimensional model equation was used to test 

where c = 1, p = 5 x and u(x, t = 0) = sin4nx. Equation' 
(5) was solved in the computational domain of -1 5 x 5 1 using 
the E N 0  schemes of various accuracies ranging from the first to the 
sixth order. The computations were advanced in time in one period 
using a Courant-Friedrichs-Lewy (CFL) number of 0.1 based on 
CFL = cAt/Ax. 

Figure 1 shows numerical errors measured by the L1 norm vs the 
numbers of grid points. The original E N 0  schemes and the E N 0  
schemes with modification introduced by Shu* maintain their the- 
oretical accuracy in computing Eq. (5). In Fig. 2, the numerical 
solutions of 40 grid points obtained by using the EN0 schemes 
are compared with the exact solution. Since the numerical re- 
sults of second-order accuracy introduce significant damping to the 
wave solutions, it is necessary to use high-order schemes for wave 
computations. 
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Fig. 2 Numerical solutions of convection-diffusion equation obtained 
by the EN0 schemes with uQ, 0) = sin4 x. 
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Fig. 6 One-dimensional model 
used by Morkovin4 for bow- 
shock-disturbance interaction. 
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Fig. 3 Numerical solutions of convection-diffusion equation obtained 
by the EN0 schemes with u(x, 0) = sin 37rx. 

Next, the effect of boundary conditions on the accuracy of the 
E N 0  schemes was tested by computing Eq. (5) with the following 
boundary conditions: 

u(0, t )  = u(Z, t )  = 0 (6) 

The general solutions of this boundary-value problem are 
OQ 

~ ( n .  t )  = C ~ n e x p ( k n t ) + n ( x )  (7) 
n = l  

where An is determined by initial conditions, and the eigenvalues 
and eigenfunctions are 

k, = - (1 /4p) [ (n1~p/ l )~  + c*] 
(8) 

@,, (x) = exp[(c/2p)x] sin(nn/l)x 

The modified fourth-order E N 0  scheme was used to solve the 
initial-boundary-value problem with c = 1, p = 1, Z = 2, and an 
initial condition of u(x, t = 0) = h ( x ) .  The exact solution is 

U(X, t )  = exP(krnt)@m(x) (9) 

The numerical solutions were obtained at t = 0.05 with CFL num- 
ber based on inviscid variables to be 0.001 (CFL = c A t / A x ) .  Again, 
grid refinement studies show that numerical results maintain the the- 
oretical accuracy of the E N 0  schemes.I6 Figure 3 compares the nu- 
merical and exact solutions. The modified E N 0  schemes performed 
well in computations for this initial-boundary-value problem. 

Stokes Oscillating Plate 
Unsteady viscous flow above an oscillating flat plate was com- 

puted using the third-order E N 0  scheme. The initially steady semi- 
infinite fluid was set into motion when the solid plate at y = 0 began 
to oscillate with velocity given by 

(10) uplate = uO sin wt 

The exact solution of this problem can be found in Ref. 17. 
The two-dimensional Navier-Stokes equations were solved using 

the third-order E N 0  scheme. Flow conditions were the same as 
those used in Rogers and Kwak.I8 The dimensionless frequency 
was unity, and uo = 40 m / s .  Periodic boundary condition was used 
inn  direction. The density, pressure, and temperature were assumed 
to be constant both at the wall and in the far field. 

Figure 4 shows the velocity distribution at the end of eight periods 
of computations. The numerical results were obtained using 20 grid 
points between Y = 0-6. The CFL number based on the inviscid 
terms was 0.5. The figure shows that the numerical solution agrees 
well with the exact solution. 

The results of these test cases indicate that E N 0  schemes of high- 
order accuracy perform well in simulating transient viscous flows. 
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Bow Shock \ 

Bow-Shock-Acoustic-Wave Interactions 
Linear Analysis 

Figure 5 shows a schematic of the bow-shock-disturbance inter- 
actions in hypersonic flow past a cylinder. When the bow shock is 
perturbed from its steady configuration by a disturbance wave from 
the freestream, the interaction generates three types of waves" be- 
hind the shock: 

1) Acoustic waves, which propagate with the speed of sound 
relative to the moving fluid, 6 p  # 0, 6p = (Sp/c2) ,  Su = (Sp /pc ) ,  
and 6s = 6 W = 0. 

2) Entropy waves, which convect with the moving fluid, Ss # 0, 
Sp = (ap/aS), Ss, and Su = Sp = SW = 0. 

3) Vorticity waves, which also convect with the moving fluid, 
6W # 0,6u # 0, andSp = Sp = 6s = 0. 

These three types of disturbance waves propagate downstream in- 
dependently, connected only through the boundary conditions at the 
shock wave and at the wall. The acoustic waves, which travel along 
Mach lines, reach the wall and reflect back to the shock upstream. 
These reflections and interactions of the acoustic waves change the 
wave structure behind the bow shock considerably. On the other 
hand, the vorticity and entropy waves propagate along streamlines 
and do not reflect on the wall surface. 

Following the method of Morkovin? the bow-shock-acoustic- 
wave interaction along the stagnation line can be formulated ap- 
proximately as a one-dimensional problem (Fig. 6). The mean flow 
variables between the shock wave and the body are assumed to 
be uniform. The disturbance pressure, density, and entropy on the 
upstream (denoted by subscript -) and downstream (denoted by 
subscript +) sides of the shock wave are nondimensionalized by 
their respective local mean variables as follows: 

P* = J P f Y P ,  u+ = Sufc, s* = SS/C, (1 1) 
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The upstream disturbances are assumed to be a planar disturbance 
wave with a single frequency, i.e., 

- 
- 
- 
- 
- 

s- = A,v_ exp{iw[t - ( x / c l M 1 ) ] }  

where A,- = 0 if there is only an acoustic wave in the freestream, 
and A,- = A,- = 0 if there is only an entropy wave in the free- 
stream. The waves behind the bow shock are the combination of 
downstream-propagating waves (acoustic and entropy waves) and 
upstream-propagating acoustic wave reflected from the wall, i.e., 

p+ = A,, exp il + i o  t - - { [ c(1:M)IJ 

X 

u+ = A,+ exp i l +  iw t - - { [ c,l:M)]} 

X 

s+ = A,,, exp(irn + iw[ t  - ( x / c M ) ] ]  

The perturbed-bow-shock shape is 

I) = - iA,  exp(ij + iwt) (14) 

where j ,  1, m, and n are the phase angles. 
If magnitudes of the disturbances are small, the Rankine- 

Hugoniot relations for a perturbed normal shock wave can be lin- 
earized as: 

where the coefficients, such as Al l  and ll 11, can be found in Ref. 4. 
The velocity boundary condition on the wall leads to 

2wd 
l = n +  + 2 N n  (16) 

c(1 - M*)  A:, = -Au+,  

where N is an arbitrary integer. From acoustic theory, the amplitudes 
of downstream- and upstream-moving acoustic waves satisfy 

A !  = - A  4 (17) A,+ = A,+, p+ 

From Eqs. (15-17), we can solve the wave parameters behind the 
shock, s+, p+, and u+, as functions of mean flow parameters and 
the freestream wave parameters. For the present case of freestream 
acoustic-wave interaction, the solution of the pressure disturbance 
behind the shock wave can be obtained as 

- %3 - 
P23 exp[(2iwd)/c(l - M2>] - Pz 

2iu(d  - x) 

where 

p& = n21 + n31 p23 = n 2 1  - n 3 1  

Q 2 3  = n21 (A32  + A33) - n 3 1  (A22  + 1223)  
(19) 

Taking the absolute values of both sides of Eq. (18) leads to the 
amplitudes of pressure and velocity perturbations downstream of 

the shock along the stagnation line. In particular, it can be shown 
that the magnitude of pressure perturbation on the body surface is 

12%3 I 

and it is always greater than the magnitudes away from the 'body. 
On the other hand, at the initial moment of introducing the distur- 

bance wave in the freestream, the induced disturbance waves behind 
the bow shock contain only downstream-moving waves. Under such 
a condition, the linearized solution of the disturbance waves behind 
the shock can be found in Ref. 20 as 

(21) 

This equation also can be derived from Eq. (15) and it is valid at 
the initial moment of imposing freestream waves until the acoustic 
waves reflected from the wall reach back to the bow shock. 

p 2Mf + 2 ( y  + 1)M: + ( 3 y  - 1)M: - y + 1 1:1= ( y  + 1) (1 + M: + 2 M M 3  

Numerical Simulation 
The bow-shock-freestream acoustic-wave interaction in hyper- 

sonic flow past a cylinder was computed using the E N 0  schemes to 
solve the Euler equations. The freestream Mach number was 8.03, 
and the cylinder radius was 0.0381 m. The calculations were carried 
out in two steps: I)  computing a steady flowfield, and 2) comput- 
ing the bow-shock-acoustic wave interaction problem by imposing 
an acoustic disturbance wave to the freestream boundary. The nu- 
merical solutions along the stagnation line were compared with the 
results of linear Morkovin analysis. The time history of the pressure 
fluctuations behind the bow shock was compared with the linear 
analytical results by McKenzie and Westphal.2" Meanwhile, grid 
refinement studies were carried out to check the accuracy of the 
numerical solutions. 

Steady-Flowfield Solutions 
Since it is difficult to obtain steady-state solutions using high- 

order E N 0  schemes, a second-order E N 0  scheme was used to obtain 
steady-flow solutions. Figure 7 shows the steady-pressure and den- 
sity distributions along the stagnation line using two sets of coarse 
(100 x 80) and fine (200 x 160) grids. The steady-pressure contours 
from coarse-grid computations are shown in Fig. 8. The results show 
that the mean flowfield was well resolved with these grids. 

Even with the second-order E N 0  schemes, slight oscillations in 
the steady-flow solutions were observed. Figures 9 and 10 show the 
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Fig. 7 Distribution of mean pressure and density along the stagnation 
line (M = 8.03): +, coarse grid and -, fine grid. 
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Fig. 8 Pressure contours of mean flow calcu- 
lation using coarse grids (100 x 80). 
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distributions of the root-mean-square (rms) values of dimensionless 
pressure and density fluctuations along two grid lines (0 = 0,48.6 
deg). The figures show that the oscillations of steady-flow solutions 
are mainly located near the bow shock, and the magnitudes of the 
oscillations are very small in the flowfield. These numerical oscil- 
lations can be damped out by using the TVD schemes with stronger 
numerical dissipation. However, since the levels of oscillations of the 
steady solutions are small compared with the magnitude of physical 
disturbances introduced in the unsteady calculations, the steady- 
state solutions of the second-order EN0 schemes are acceptable. 

E 
I 
E a 
W 
c 
8 
._ 2 
0 

Fig. 11 

I " "  

660 I I 
0 5e-05 0.0001 0.00015 0.0002 

Time history of instantaneous pressure behind the shock (M =. 

Time 

8.03, k = 250 m-'). 

0.12 I 

0.1 

e 
0.08 

e a 
8 0.06 

e 
2 0.04 
6 

0.02 

c m 

IJI 

Fig. 12 
(k = 125 m-l): 6, coarse grid and - - -, fine grid. 

Grid refinement study for rms disturbance pressure calculation 

0.12 ' j  j 

0.1 

0.08 

0.06 

0.04 

0.02 

n 
0 0.005 0.01 0.015 0.02 

Distance from the body 

Fig. 13 Distribution of rms disturbance pressure along the stagnation 
line (k = 125 m-I): -, Morkovin and 6, numerical. 

Bow-Shock-Acoustic-Wave Interaction 
Having obtained the steady flowfield, we introduced the follow- 

ing acoustic disturbances to the steady solutions at the freestream 
boundary: 

(22) 6q = Aq exp{ik[x - (u + c ) t ] )  

where q can be u ,  u,  p ,  or p .  and 

AU = EOU, ,  AV = 0 Ap = p,c,Au 
(23) 

In the computations, three wave numbers--k = 125, 170, 250 
m-l-and a CFL number of approximately 0.8 were used. All the 
unsteady computations were performed for 30 disturbance periods. 
Afterward, the rms values of the disturbance-flow quantities were 
calculated for about 25 periods. The rms values of the disturbance 
variables were the numerical solutions of the spatial distribution of 
the magnitudes of the disturbance waves. 

Ap = Ap/c& €0 = 0.01 
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Figure 11 shows the time history of disturbance pressure at a fixed 
point immediately behind the bow shock along the stagnation line 
for the case of wave number k = 250 m-'. Two discrete zones can 
be observed in Fig. 11. The first zone only contains downstream- 
moving acoustic waves at the initial moments of introducing the 
freestream wave. The second zone contains both the downstream- 
and upstream-moving acoustic waves after the reflected acoustic 
waves reach back to the shock. The straight lines in the first zone 
are the theoretical maximum and minimum values given by Eq. (21). 
Because no disturbances can transmit through the shock and propa- 
gate upstream, these acoustic waves are reflected back and forth in 
the region between the shock and the body. Because the reflection 
coefficient'' of acoustic waves incident behind the normal shock 

0 0.005 0.01 0.015 0.02 cannot exceed unity for perfect gas, the resonance of acoustic waves 
cannot build up, and the bow shock in a perfect gas is always stable. 

Figure 12 shows the results of rms disturbance pressure distri- 
bution along the stagnation line from both coarse- and fine-grid 

Distance from the body 

Fig. 14 Distribution of rms disturbance pressure along the stagnation 
line (k = 250 m-'): -, Morkovin and +, numerical. 

Fig. 15 Contours of rms disturbance: a) pressure, b) density, and c) vorticity (k = 250 m-'). 

Fig. 16 Contours of instantaneous disturbance: a) pressure, b) density, and c) vorticity (k = 250 m-l). 
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computations with wave number k = 125 m-I. The results show 
that current grids are accurate enough to resolve the transient acous- 
tic flow features. 

Figures 13 and 14 show the comparison of numerical solutions 
with analytical ones for the magnitudes of pressure waves at different 
freestream frequencies. The solid lines correspond to the analytical 
values obtained from Eq. (20). The wavelengths from numerical 
calculations are slightly larger than those from analytical solutions. 
Numerical amplitudes of the pressure waves are also greater than 
those predicted by the linear analysis. This discrepancy is caused 
by the simplified assumption of uniform steady flowfield behind 
the shock used in the analytical analysis. In reality, the steady flow 
downstream from the shock is not uniform. The difference in wave- 
length can be verified easily as follows. From Eq. (20), the wave- 
length h in the rms value of the pressure waves is 

2wh 
= 2n  

c(1 - M2) 

Substituting w = k(u l  + cl) for freestream acoustic waves results 
in 

Since the mean flow velocity as well as M is decelerating toward 
the wall, the wavelength given by the above equation will become 
larger than that obtained from uniform flow assumption. This also 
will affect the amplitudes of disturbances. Therefore, there is the 
additional amplification of disturbance properties in the numerical 
solutions near the wall, as shown in Figs. 13 and 14. 

Figure 15 shows the contours of rms disturbance pressure, density, 
and vorticity with k = 250 m-I. The results show that the maximum 
disturbance pressure is located at the stagnation point. Amplitudes 
of disturbances drop an order of magnitude as these disturbances 
propagate away from the stagnation line. Other numerical results 
using a different freestream Mach number show a similar trend. 

Figure 16 shows the contours of instantaneous disturbance pres- 
sure, density, and vorticity. The amplified acoustic wave pattern 
can be observed in Fig. 16a. Since the disturbance density field is 
composed of both acoustic and entropy waves with the following 
dimensionless relation: 

(26) 6p = 6 p  + 6s 

the flow pattern of the instantaneous density field is more complex 
than that of the disturbance pressure field shown in Fig. 16a. How- 
ever, two zones downstream of the shock can be roughly seen. The 
first zone, which is near the shock, is composed of both acoustic and 
entropy waves. The second one, which is near the body, is composed 
mainly of acoustic waves. 

The results also show that uniform freestream acoustic waves be- 
come very nonuniform in magnitude after they interact with the bow 
shock and with the reflected waves from the cylinder. The distur- 
bances magnitudes are amplified greatly by the reflection near the 
stagnation region. These results can be valuable to the understanding 
of the effect of shock-disturbances interactions on the receptivity 
and transition of hypersonic boundary layers. 

Conclusions 
E N 0  schemes of high-order accuracy have been applied to the 

two-dimensional Euler and Navier-Stokes equations for studying 
transient hypersonic viscous flows. The grid refinement studies 
on the linear convection-diffusion equation show that the E N 0  
schemes maintain their theoretical orders of accuracy in these test 
cases. Numerical analyses of Stokes oscillating plate indicate that 
the high-order E N 0  schemes are suitable for calculating unsteady 
flows with solid boundaries. 

The interactions of freestream acoustic waves with a strong bow 
shock wave in hypersonic flow past a cylinder have been studied 
using the third-order E N 0  scheme. Numerical results along the 

stagnation line agree reasonably well with the linear analytical so- 
lutions; the differences between the two solutions are caused by the 
simplified assumption used in the linear analysis that the mean flow 
behind the shock is uniform. The results show that the disturbances 
downstream of the shock are considerably amplified by the wave in- 
teractions and reflections between the shock and the wall. The distur- 
bance waves become very nonuniform in magnitude near the cylin- 
der, and the maximum pressure wave magnitude is always located 
at the stagnation point. These results show that the bow shock wave 
has strong effects on the receptivity of hypersonic boundary layers. 
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