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Abstract 

High-order accurate and efficient numerical methods 
are required for timeaccurate computations of three- 
dimensional transient nonequilibrium hypersonic flow. 
There are two major difficulties in such computations: 
l), the governing equations are stiff in time integra- 
tion because noneqnilibrium flow has a wide range of 
time scales; and 2), it is difficult to do high-order com- 
putations on hypersonic flow fields involving shock- 
wave and shock/boundary-layer interaction. In this pa- 
per, we propose a new set of high-order semi-implicit 
Runge-Kutta schemes for integrating nonequilibrium 
flow equations with stiff source terms. The coefficients 
of such schemes, which are up to third-order accurate 
and are strongly A-stable for the stiff terms, have been 
derived. Meanwhile, we use finite-difference TVD or 
EN0  schemes for high-order multi-dimensional spa- 
tial discretization. we have also derived an accurate 
and efficient approximation method to evaluate vibra- 
tional temperature used in the physical model. Finally, 
the new schemes are tested in several one- and tww 
dimensional steady and transient nonequilibrium flow 
problems. 

Introduction 

This paper concerns with suitable numerical meth- 
ods for computing three-dimensional transient hyper- 
sonic flow associated with maneuvering hypersonic ve- 
hicles. These numerical simulations can have many 
applications in the studies of nonequilibrium hyper- 
sonic flows involving unsteady shock-wave/boundary- 
layer interaction, stability and transition of hypersonic 
boundary layers, and turbulent hypersonic flows. For 
such computations, high-order numerical methods are 
required in order to capture small-scale flow features. 
Computing transient hypersonic flow is difficult in two 
aspects: the presence of shock-wave/bonndary-layer in- 
teraction in the flow fields. and the stiffness of the 
governing equations in time integration. 
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The existence of shock waves in the flow fields makes 
it difficult to obtain spatially high-order discretization 
solutions because of the discontinuous nature of the 
shock waves. Among current methods, the ENO['] 
and TVDl21 schemes can capture shock with high- 
resolutions, Le., they are high-order accurate in smooth 
region of the flow fields, but reduce to first-order accu- 
rate inside a shock wave or other discontinuity surfaces. 
Between the two methods, The TVD schemes are more 
stable than the E N 0  schemes in general, on the other 
hand, the accuracy of the TVD schemes is more lim- 
ited than the E N 0  schemes because the local order of 
accuracy of the TVD schemes reduce to first order at  
the ex t rema of the smooth solutions. Therefore, the 
E N 0  schemes are more suitable for transient flow sim- 
ulations, but the TVD schemes are better for obtaining 
steady-state solutions. 

The spatial discretization of the governing equations 
leads to a set of ordinary differential equations which 
are usually stiff for nonequilibrium problems. The stiff- 
ness of hypersonic flow computations is mainly caused 
by the chemical and thermal source terms modeling 
finite-rate nonequilibrium processes, and, in some ex- 
tent, the transport terms normal to the wall inside a 
boundary layer. The source terms are stiff because they 
contain a wide range of time scales, some of which are 
much smaller than the macroscopic transient flow time 
scales. 

For stiff flow equations, implicit methods are needed 
to replace the explicit time-stepping methods. Prac- 
tical implicit methods for multi-dimensional reactive 
flow calculations include the fractional step method 
and the semi-implicit method. The fractional step 
m e t h ~ d [ ~ ' ~ I ,  solves the stiff terms and the nonstiff 
terms independently. The changes resulting from the 
separate partial calculations are combined together af- 
ter each procedure. The time restrictions are removed 
by using different methods to compute each process, 
and there is no direct coupling between the individual 
steps. The drawback of this method is that the tem- 
poral accuracy is limited to second-order accurate if a 
Strang['] splitting methodf6] is used. 

For compressible reactive flow, a semi-implicit Mac- 
Cormack method[7s8898 '1 has been used to com- 
pute the chemical source terms implicitly while the 
fluid terms are computed explicitly. Engquist and 
Sjogreen["I computed detonation waves using the TVD 

1 



and EN0 schemes for the convective part of the equa- 
tions, and incorporated the source term into the time 
marching Runge-Kutta schemes by a semi-implicit 
method. Their third-order schemes are A(a)  stable 
for the stiff source term, when the nonstiff convective 
term satisfies a CFL condition. In a previous paper["], 
a new set of semi-implicit Runge-Kutta methods were 
derived and analyzed based the general form of implicit 
Runge-Kutta formulas, which are different from those 
used in Ref. [lo]. Fully implicit and Rosenbrock semi- 
implicit Runge-Kutta methods of both high-order ac- 
curate and strongly A-stable (i.e., A ( ; )  stable)[12] for 
the implicit terms were derived. The strongly A-stable 
methods are needed for numerical results t o  reach cor- 
rect asymptotic values for very stiff problems. The 
stability and accuracy of the new schemes were tested 
in several model problems. 

In this paper, we will, 1) discuss the governing equa- 
tions and physical models for nonequilibrium hyper- 
sonic flow without ionization and radiation; 2) present 
the new semi-implicit Runge-Kutta schemes for com- 
puting such flows; 3) present some numerical results 
obtained by a new three-dimensional finite difference 
computer code using the proposed numerical methods. 

Governing Equations 

For nonequilibrium hypersonic flow without ioniza- 
tion and radiation at temperature less than about 
9O0OoK, we use a 5-species, 17-reaction nonequilib- 
rium air model by Park['31 141, which is appropriate 
for air flow at temperature below 9000'1f. The three- 
dimensional governing equations in Cartesian coordi- 
nates are 

au aFj aFVj = W  
at ax; ax; --I-+- 

where 

U =  

Fj = (3) 

(4) 

where F; and F,; are the inviscid and viscous flux 
vectors in j - th  coordinate direction respectively, and 
W is the source term vector due to  nonequilibrium 
thermal and chemical processes. 

For computations using body fitted grids, the gov- 
erning equations can be solved by coordinate transfor- 
mations. 

In the model, translational and rotational modes are 
assumed to have a single translational-rotational tem- 
perature T, and the Vibrational modes of all diatomic 
species are modeled by a single vibrational temperature 
Tu. The pressure is 

i 

where R; is the species specific gas constant. The total 
energy is 

m m 

where h; is the heats of formation, c,;, the specific 
heat at  constant volume is equal to 3&/2 and 5 Q / 2  
for monatomic and diatomic species respectively, and 
the total vibrational energy is 

where the summation is carried out only for diatomic 
species, which are listed as the first d species. 0,; is the 
characteristic vibrational temperature. 

For flow in the continuum regime, the viscous 
stresses are modeled using the Navier-Stokes equations: 

where bulk viscosity is assumed to be zero, i.e, X = 
-2p/3 .  The heat flux vectors are modeled by the 
Fourier law: 

aT 
qj  = -K- - C j i r h ;  

a"; (9) 

where K is the heat conduction coefficients. Since the 
chemical species in the air has close properties, a binary 
diffusion model is assumed for mass diffusion: 
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where Di is the diffusion coefficient. 
The detailed models for the viscosity, conductivity, 

and diffusion coefficients for the mixture of air can be 
found in Refs. [15, 16, 17, 181. 

In the governing equations, wi is the chemical source 
terms, and wu is the Vibrational source term. The re- 
action equations for the current five-species model of 
Park['3] are 

N 2 i M  2 N + M  (11) 
0 2 + M  2 0 + M  (12) 

N O + M  = N + O i M  (13) 
N 2 i O  F= N O i N  (14) 

N O i O  0 2 i N  (15) 

where M denotes any of the species. An elementary 
reaction listed above can he written as 

A B + M  = A i B + M  (16) 

The change in the amount of constituent AB in moles 
per cubic meter is 

where k, and kb are forward and backward reaction 
rates. 

The source terms for the vibrational equation equa- 
tions are 

w, = QT-v i Q v - D  (18) 

where QT-v is the translation-vibration coupling and 
is modeled by a Landau-Teller model: 

where 

and r, is the relaxation time given by Millikan and 
White["]. The vihration-dissociation coupling term 
Q V - D  is modeled as 

An Approximate Method for 
Computing Tu 

In the computations, the total vibration energy is 
first obtained by the conservation equations, then the 

vibrational temperature is computed according to Eq. 
(7), which leads to 

m 

e ,  = C p i Q . f ( T , , & )  (22) 
i = l  

where 

Because B,,  varies for different species, the nonlinear 
Eq. (23) needs to he solved by an iterative method such 
as the Newton's method. Such interactive procedure is 
needed at  all grid points at every time step and can he 
computational expensive. 

It is observed that the diatomic molecules in air, Nz,  
02, and N O  have close value of 0,; as follows: 

0 2  N2 N O  
B,i (OK) 2270 3390 2740 

Therefore, we can assume all diatomic molecules 
have the same average characteristic vibrational tem- 
perature defined by 

- 
B, = 2 8 O O O K  (24 )  

to obtain an initial estimate Two directly. The equa- 
tions for T,o is 

(25) 

The TUo obtained from the equation above is close to 
the exact value, a much better approximation can he 
obtained by a first-order Taylor series around (Tu0,a): 

The modified value of vibrational temperature Tul can 
be calculated from the equation above directly and is 
taken as the approximate Vibrational temperature of 
the air. 

The accuracy of this approximate method can be 
checked by comparing Tol with the exact Tu. Figures 
2 and 3 show comparison of Tu,,  Too, and exact T, of 
a mixture of air. These figures show that Tul is very 
good approximation of Tu for all the cases considered. 

Characteristic Times of Internal 
Processes 

For a mixture of nonequilibrium air, the internal 
states are the combinations of many internal rate pro- 
cesses, the time scales of such processes are an impor- 
tant factor in characteristerizing flow regimes. The in- 
ternal thermal and chemical states can be classified as 
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equilibrium, nonequilibrium, and frozen states depend- 
ing on if the relaxation time is much larger than, as the 
same order of magnitude as, or much smaller than the 
macroscopic characteristic time of the flow, which is 
usually measured by a Damkohler number. 

For our current fivespecies model, the vibrational 
relaxation can be measured by the relaxation time r, 
expressed in the form[1g]: 

d 

rs p = exp[a(T-'f3 - b)  - 18.421 atm - s (27) 

where a and b are constants for a given species. We 
use an average values of a and b t o  estimate the char- 
acteristic vibrational relaxation time. 

For an elementary reaction given in Eq. (17), the 
characteristic time corresponding to the forward reac- 
tion is 

R T  r , p = -  
kI 

where R is the universal gas constant. We use this 
characteristic time to  roughly estimate a reaction time 
scale. 

Figure 4 shows r p  given hy Eq. (19) and Eqs. ( 1 1 )  
(15) as a function of temperature. This figure shows 
that the time scale of internal processes of a nonequi- 
librium air mixture is about five orders of magnitudes 
apart. Therefore, noneqnilihrium flow system is stiff if 
the smallest relaxation time is much smaller than the 
macroscopic flow characteristic time. 

choose the finite difference formulation of Shu and 
Osher[201 for three-dimensional high-order computa- 
tions. 

The finite difference EN0 or TVD schemes based 
on flux were developed by Shu and Osher and can he 
easily applied to multi-dimensional flow. The inviscid 
flux terms in the governing equation can be written as 

aFj fj+l /2  - &1/2  - x  ax Ax (29) 

where the numerical flux j j + l / z  approximates, to high- 
order accuracy, a function h(xj+1/2) defined by 

In the calculations, hj+,/z are reconstructed by a di- 
vided difference tables Fj defined by: 

hb,1]  = Fj (31) 
hb ,  k] = h [ j  + 1 ,k  - 11 - hlj ,k - 11 (32) 

k = ( 1 , .  . . , r )  

where r is the spatial order of accuracy of the scheme. 
For first-order upwind scheme, 

( 3 3 )  

where i is equal to j or j + 1 according to  the local 
characteristic directions for each characteristic field. 

+ /  The average eigenvalues and eigenvectors at  the in- 
'v Numerical Methods terface x = xj+1/2 are evaluated using a Roe aver- 

age procedure between Vi and Ui+]. The Roe average 
The governing Eq. (1) is solved by the method of 

lines using a finite difference upwind scheme developed 
by Shu and Osherl2'I to discretize the equation in space. 
The viscous flux terms are evaluated by central differ- 
ence methods, and inviscid terms are evaluated by ei- 

method for nonequilibrium flow derived by Grossman 
and Cinnelh[231. 

High-order accuracy in computing flux is achieved by 
non-oscillatory adaptive interpolation based on TVD 
or EN0 reconstructions. For r-th order method: 

(34)  ther EN0 or TVD schemes with high-order accuracy f?) j ( 7 - 1 )  in space. 1 + 1 / 2  = 1 + 1 / 2  + h[i, r - W r ,  4 
Subsequently, the semi-discrete system of ordinary 

differential equations is solved by a semi-implicit 
method, in which, the source terms and flux terms in- 
volving normal derivatives are solved implicitly, and 
the rest of the flux terms are solved explicitly. A new 
set of semi-implicit Runge-Kutta schemes is proposed 
for stable and high-order temporal discretization. 

Spatial d iscre t iza t ion  
The presence of strong shock in the flow field requires 

the use of unwind schemes and nonoscillatory recon- 
struction in the computations. For high-order EN0 or 
TVD schemes, both finite volume or finite difference 
method can he used[20, 21, 22]. 

Since third- or higher-order accurate finite volume 
method for multidimensional flow is a difficult task 
for both structured and unstructured grids[213 221, we 

where a(r,  i) is defined by 

For finite difference method with a structure grid, 
a(r ,  i )  can be calculated once and saved in the memory. 

For the EN0 schemes, the stencil is chosen by com- 
paring the magnitudes of two neighboring flux dif- 
ference values in order to find the one with smaller 
magnitude. In order to improve the accuracy of the 
EN0 schemes for smooth solutions, several modifica- 
tions methods have been proposed for the EN0 stencil 
selection procedure[241. On the other hand, a second- 
order TVD scheme with a minmod limiter can be ob- 
tained by using a minmod function in stead of choosing 
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a minimum. These procedures will lead to a TVD or 
an E N 0  scheme using Roe average as a building block, 
which needs entropy correction across sonic points. Shu 
and Osher use a local Lax-Friedrichs schemes as an en- 
tropy correction for the E N 0  scheme. More details can 
be found in Ref. [20]. 

Boundary conditions 
The boundary conditions in the free stream and in a 

supersonic exit are either specified or calculated by an 
extrapolation method. For inviscid flow computations, 
characteristic relations are used to compute the flow 
variables at the wall. 

Temporal Discretization 

The spatial discretization of the governing flow equa- 
tions leads to a system of first-order ordinary differen- 
tial equations, 

- = L ( U ) + W  dU 
dt 

'9F where L(U) ,  which is the discretized form of & + 
aF 
.) terms in Eq. (l), can be regroup as: 
az, 

L(U)  = L l ( U ) + L 2 ( U )  (37) 

where Ll(U) is the non-stiff part of the flux and Lz(U) 
is the stiff part of the flux terms which are treated 
implicitly with the source term. 

Therefore, the spatial discretization leads to a sys- 
tem of first-order ordinary differential equations, 

du 
dt 
- = f(u) + g(u) 

where u is the vector of discretized flow field variables, 
f is the result of the spatial discretization of the terms 
which can be computed explicitly, and g is the result 
of the spatial discretization of the stiff terms which are 
to  be computed implicitly. For simplicity, we assume f 
and g are not explicit functions of the time. 

Semi-implicit Runge-Kutta schemes 
The Runge-Kutta methods are one-step methods 

involvin intermediate sta es to achieve high-order 
accurac$1z2 251. In Ref. ["f, we considered three ver- 
sions of r-stage semi-implicit Runge-Kutta methods in- 
tegrate Eq. (38) by simultaneously treating f explicitly 
and g implicitly. 

Method A is: 
I 

(39) u"+l - - u " + C w j k j  
j = 1  

i - 1  

ki = h { f ( u " + C b ; j k j )  
j = 1  

i - 1  

+ g(u" + cijkj + aik i ) )  (40) 
j = 1  

(i = 1, . . . , r )  

where h is the time-step size, and a;, bi j ,  c;j, wj are pa- 
rameters determined by accuracy and stability require- 
ments. Eq. (41) is a nonlinear equation at  every stage 
of the implicit calculations if g is a nonlinear function 
of u. The computations are relatively inefficient, since 
nonlinear solvers, such as the Newton's method, are r e  
quired to solve such nonlinear equations, but it has the 
strongest stability properties among the three meth- 
ods. Method A of r order accuracy is termed SIRK-rA 
method. 

Method B and C,  which are more computationally 
efficient than method A, is a semi-implicit extension of 
the Rosenbrock Runge-Kutta 

I 

u"+l = u" + x w j k j  (41) 
j=1 

I 
i- I i - - l  

( i =  l , . . . , r )  

Where J = 3 is the Jacobian matrix of the stiff term 
g, and dij is an additional set of parameters. 

Most of the Rosenbrock methods, which are similar 
to Eqs. (41) and (42), use a single a; = a in order 
to use a single LU decomposition in solving Eq. (42) 
for all stages["]. However, LU decomposition is often 
not possible for multi-dimensional reactive flow prob- 
lems because of the enormous computer memory re- 
quirement involved in the LU decomposition method. 
Therefore, in this paper, the ai's are allowed to differ 
from one another in order to have more flexibility in 
searching for the optimal parameters in both stability 
and accuracy. 

It can also be shown that the coefficient d;j's do not 
have a strong effect on accuracy and stability of the 
numerical method, they are chosen to reduce computer 
storage requirement by choosing 

Method B: d;j = 0 
Method C: dij = ci j  

Similarly, method B and C are termed SIRK-rB and 
SIRK-rC methods. 

Methods B and C are similar to the implicit meth- 
ods used in computational fluid dynamics and are much 
more efficient than the full implicit version. But, for 
some strongly nonlinear problems, method A is nec- 
essary because it is more stable for nonlinear prob- 
lems than the Roseubrock semi-implicit Runge-Kutta 
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method is. Therefore, all three versions of the semi- 
implicit Runge-Kutta methods were considered and c e  
efficients were derived to be both high-order accurate 
and strongly A-stable for the implicit terms. 

Coefficients in SIRK schemes 
The parameters of the semi-implicit Runge-Kutta 

methods are chosen based on both stability and accu- 
racy requirements with the simultaneous coupling be- 
tween the explicit and implicit terms. The stability 
condition for a semi-implicit time-stepping scheme can 
be analyzed by considering a simplified linear model 
equation to require that  the schemes are strongly A 
stable for implicit terms as long as the explicit satisfied 
CFL conditions. The optimal parameters are compu- 
tationally searched in the semi-implicit Runge-Kutta 
schemes by simultaneously imposing the stability and 
accuracy conditions discussed above. For example, for 
third-order schemes, the parameters are searched for 
simultaneously satisfying the following conditions: 

1. Third-order accuracy; 

2. Large stability region for the explicit term; 

3. A strong A-stability condition for implicit; 

4. ai > 0. 

The search results in the following coefficients for 
SIRK methods: 

First-order (SIRK-IA. -lB. -IC) methods: 

w 1 =  1 a1 = 1 

Second-order (SIRK-2A, -2B, -2C) methods: 

w1 = 112 

a1 = I - J 2 / 2  
e z 1 = J Z - 1  

w2 = 112 

a2 = I - 4 1 2  

b2l  = 1 
two sets of other parameters: 

or 
a1 = 114 a2 = 113 
~ 2 1  = 5/12 

Third-Order SIRK methods: 

WI = 118 
w3 = 314 
631 = 711252 

w2 = 118 
6 2 1  = 718 
632 = 7/36 

SIRK-SA: 
a1 = .485561 a2 = ,951130 
a3 = ,189208 
c31 = .45 

c21 = ,306727 
e32 = -.263111 

SIRK-3B: 

a l  = 1.40316 a2 = ,322295 
a3 = .315342 
c31 = 112 

c21 = 1.56056 
c32 = -.e96345 

SIRK-3C: 
al  = ,797097 a2 = ,591381 
a3 = ,134705 c21 = 1.05893 
CQ1 = 112 c32 = -.375939 

where a1, a z ,  a3,  c21, and c32 are irrational 
numbers with six significant digits. The double- 
precision values of these parameters are listed in 
Table 1. 

The stability of the new SIRK schemes and other 
semi-implicit schemes were analyzed and tested for sev- 
eral model equations in Ref. [ l l ' .  The new methods 
were found to be stable and high-order accurate in 
those test cases. 

Results 

A new three-dimensional high-order finite-difference 
SIRK inviscid computer code has been written using 
the numerical methods discussed in this paper. Vis- 
cous terms are currently being incorporated in the 
SIRK code. The code has an option of using either 
TVD or E N 0  schemes in spatial discretization. I t  uses 
semi-implicit Runge-Kutta method in treating the fluid 
terms explicitly and the source term implicitly, and it 
uses five-species air chemistry model of Park and sim- 
ple Landau-Teller model for vibrational relaxation. 

We have computed several inviscid, steady and tran- 
sient, hypersonic flow problems using the new SIRK 
code. 

Case 1: nonreacting flow in a shock tube 
We first tested the new SIRK code in a nonreacting 

shock tube problem with the following initial condi- 
tions: 

p = 0.01kg/m3 whenx 2 0 p1 = 1 0 3 ~ ~  

The initial species mass fraction are: 

C1 = CN, = 0.79, 
c3 = C N O  = 0, 
c, = co = 0 

C2 = Co, = 0.21, 
c, = CN = 0, (43) 

This flow has a maximum temperature of 700'K. 
Therefore the vibrational and chemical modes can be 
considered frozen, and the gas is a perfect gas. The 
exact solutions are available for comparison. 
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Figures 5 to 7 show the comparison of numerical so- 
- lutions (circles) with analytical solution (lines). The 

numerical solutions are obtained by the multicompo- 
nent SIRK code using the 3rd-order local Lax-Fridrichs 
E N 0  (ENO-LLF) scheme and explicit third-order TVD 
Runge-Kutta schemes of Shu and Osher. The results 
are consistent with other E N 0  codes for perfect gas. 
The use of ENO-LLF scheme produces more numeri- 
cal dissipation across the shock, and the contact sur- 
face compared with E N 0  schemes is based on Roe flux. 
The dissipation can be reduced by improving the spa- 
tial schemes. Since the emphasis of this paper is on the 
semi-implicit schemes, we have not fully optimaized the 
spatial part of the methods. 

Case 2: unsteady 1-D nonequilibrium flow 
The second case is to use initial shock interaction to 

create high enough temperature to  cause vibrational 
and chemical excitation between the two shocks (Fig- 
ure 1). The initial conditions are: 

. 

& 

L 
2 -  

p = 3.97kg/m3 
p = 2.3 x 106Po 
M = 1.5 

when - - > I < 0 

L 
when 0 5 I 5 - 2 

p = 3.97 x 10-'kg/m3 

M = -1.5 
= 2.3 1 0 5 ~ ~  

where the length of the computational domain is L = 
10-'m. The initial mass factions are the same as those 
of the previous case. The initial non-zero velocity is 
needed so that high temperature can only be created 
in the interior of the flow field with a low initial tem- 

'' 

Case 3: 
nonequilibrium shock /en t ropy  wave interaction 

As a part of our studies of interaction of free stream 
disturbances with shock waves['*], we tested the new 
3rd order SIRK methods with 3rd-order accurate E N 0  
schemes to the computations interaction of strong 
shock with incoming disturbance waves. Specificly, we 
used the numerical results of nonequilibrium flow of 
Case 2 for the right running shock as initial conditions, 
and then superimposed the following density distur- 
bances: 

6p = sin[w(r - ut)] 
6p = 0 { 6u = 0 

whenz > 10 

This corresponds to a entropy wave moving with fluid 
particle velocity. The interaction with the shock will 
create a combination of an acoustic wave and entropy 
wave down stream of the shock. 

For shock wave with nonequilibrium relaxation, the 
nonequilibrium real gas effects on the interaction is cnr- 
rently under our investigation. For such flow with oscil- 
lation in the smooth solutions, E N 0  schemes are able 
to compute them with high order accuracy. 

Figures. 13 to 17 are the results of the shockfentropy 
wave interaction for the right running shock in the pre- 
vious case. The initial wave is specificed by c = 0.2 and 
w = 10.O1ml. The results show that the nonequilib- 
rium region has very irregular interaction in density 
and in temperatures. The vibrational temperature has 
much less oscillation behind the shock compared with 
the translational temperature. However, the pressure 
waves which are only linked to  acoustic waves are much 
less influenced by the presence of the relaxation zone. 

perature. 
In order to capture the relaxation zone behind the 

shock, both 400 and 800 grid points are used for the 
present problem. A CFL number of 0.4 based on in- 
viscid characteristic speeds is used for both reacting 
and nonreacting cases. The numerical solutions are 
obtained by using the 3rd-order ENO-LLF scheme in 
space and SIRK-3A method in time. It was found that 
the third-order semi-implicit methods is several orders 
of magnitude more stable than the pure explicit meth- 
ods in terms of allowable time step sizes. 

Figures 8 to 12 show the numerical solutions of the 
nonequilibrium shock interaction problem. The initial 
discontinuities generate two shock waves and a contact 
surface moving in the tube. The shock on the right 
is a strong shock and the shock on the left is a weak 
one. Figure 9 shows that there is mainly a chemical re- 
laxation zone behind the strong shock and a primarily 
vibrational relaxation zone following the weak shock. 
The relaxation zone on the left is much longer than 
the one on the right. Meanwhile the density and pres- 
sure distribution also show the relaxation zones. 

Case 4: 2-D nonequilibrium 
hypersonic  flow past a cyl inder  

As a tested of the SIRK method for multi- 
dimensional nonequilibrium flow. A test case of hy- 
personic flow past a cylinder in a partially dissociated 
nitrogen is computed. This case has been used to test 
numerical algorithm because there is an experimental 
bow shock shape for comparison[14, "I. 

We test the semi-implicit Runge-Kutta method for 
inviscid flow problems with the current model. Since 
TVD schemes are more stable for steady flow compu- 
tations, we used 2nd-order TVD schemes in  space and 
SIRK-3A in time. The solutions assuming vibrational 
and chemical frozen were also calculated for compari- 
son. 

A uniform 61 x61 grid (Figure 18) is used to compute 
the 2in diameter case of Hornuug. The free stream 
conditions are 

Chi, = 0.927, 
u, = 5590m/s, 
p, = 2910pa 

CN = 0.073 
T, = 1833 

'd 
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Figures 19 to 21 show the comparison of flow con- 
tours between the frozen and nonequilibrium solutions. 
The perfect gas assumption in the frozen solutions prc- 
duces much larger bow-shock standoff distance. Mean- 
while, the relaxation creates a relaxation zone behind 
the bow shock, which can be seen in Figures 22 and 23. 

Figures 24 to 25 show the distributions of mass frac- 
tions and temperatures across the stagnation line. The 
results show that the flow has a long relaxation length 
for chemical modes, but it has a much shorter relation 
for vibrations. 

Finally, the density contours are compared with 
fringe pattern which represents the gradient of density. 
Though the comparison is not an exact comparison, at 
least we can see the bow shock produced by nonequi- 
lihrium code is roughly the same as the experiment. 

Conclusions 

In this paper, we have discussed the physical models 
and numerical methods for conducting direct numerical 
simulation of 3-D transient nonequilibrinm hypersonic 
flow. In the process, we found that the vibrational 
temperature used in the model can be evaluated by a 
simple and efficient new method with accurate results. 
For high-order multi-dimensional spatial approxima- 
tion, we use the finite difference TVD or E N 0  schemes. 
For time intergation of the stiff equations, we propose 
a new second- and third-order semi-implicit Runge- 
Kutta time-stepping schemes which were derived in our 
previous paper. The new method is tested in several 
1-D and 2-D nonequilibrium flow problems. The com- 
putations show that the new high-order schemes are 
robust while maintaining high-order accuracy. As our 
next steps, we will test the algorithm and the new com- 
puter code on viscous and 3-D flow problems, and we 
will study transient hypersonic flow phenomena 
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Table 1: The double-precis ion values of the pa- 
rameters for the S I R K - 3  methods 

SIRK-3A: 
01 = .4855612330925677 a2 = ,9511295466999914 
03 = .1892078709825326 
e31 = .45 

SIRK-3B: 
01 = 1.403160446775581 
a3 = ,3153416455775981 

~ 2 1  = .3067269871935408 
c32 = -.2631108321468882 

02 = ,3222947153’259484 

C32 = -.6963447867610024 
c21 = 1.560563684998894 

1 e31 = 5 

SIRK-3C: 
01 = .7970967740096232 
03 = ,1347052663841181 

1 c31 = 5 

02 = .5913813968007854 
e21 = 1.058925354610082 
C32 = -.3759391872875334 

/ / / / / / / / / / / / / / / / / / / / / /  

I A 7 u  
/,I I : 

/ / / /  / / / / / / / / / / / / / / I /  - -  - 
Figure 1: A schemat ic  of flow field of Case 2. 
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Figure 2: Approximate and exact vibrational Figure 5: Density distribution of nonreacting 
temperatures for air. shock tube flow using the 3rd-order ENO-LLF 
0 2  : N O  = 0.79 : 0.21 : 0. scheme. 

Mass fractions are N2 : 

Figure 3. Approximate and exact vibrational 
temperatures for air. Mass fractions are: Nz : 
0 2  : N O  = 0.6 : 0 : 0.03. 

7 p (s atm) 
0 PS 

P? __________. 
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Figure 4: Average vibrational andT&mical re- 
laxation times of the five-species air model of 
Park. 

Figure 6: Pressure distribution of nonreacting 
shock tube flow using the 3rd-order ENO-LLF 
scheme. 

A 
Figure 7: Velocity distribution of nonreacting 
shock tube flow using the 3rd-order ENO-LLF 
scheme. 
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.. .. 
Figure 8: Velocity distribution of a reacting Figure 11: Density distributions of a react- 
shock interaction (SIRK-3A with 3rd-order ing shock interaction (SIRK-3A with 3rd-order 
ENO-LLF scheme). ENO-LLF scheme). 
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Figure 16: Instantaneously density distribution 
of incoming entropy wave interaction the right 
runing reacting shock wave. 

Y .  

u Figure 18: Computational grid for case 4. 
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Frozen 

Noneq. 

Frozen 

Noneq. 

Figure 19: Translational temperature contours of Figure 21: Density contours of frozen and 
frozen and nonequilibrium flow solutions. nonequilibrium flow solutions. 

Frozen 

Noneq. 

Figure 20: Pressure contours of frozen and Figure 22: Vibrational temperature contours of 
nonequilibrium flow solutions. reacting flow solutions. 
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~i~~~~ 23: M~~~ &action N~ ofnonequi- Figure 25: Temperature distributions of the 
librium flow solutions. nonequilibrium solutions along the stagnation 

line. 
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Figure 24: Species mass fraction distributions of 
the nonequilibrium solutions along the stagna- 
tion line. patterns 

Figure 26: Density contours of nonequilibrium 
solutions and Hornung’s experimental fringe 
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