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Abstract 

The flutter of shallow, curved, heated three di- 
mensional orthotropic panels exposed to hyper- 
sonic airflow is considered. The equations of 
motion, based on Marguerre shallow shell the- 
ory, are derived for two types of panel curva- 
tures. The formulation also allows for the pres- 
ence of a shock upstream of the panel and a 
general temperature distribution. The equa- 
tions are solved using Galerkins method com- 
bined with direct numerical integration in time 
to  compute stable limit cycle amplitudes. Non- 
simple harmonic motions are observed for suffi- 
ciently high post-critical dynamic pressure val- 
ues and the complex behavior is illustrated us- 
ing representative phase plane plots. Aerody- 
namic healing, the presence of a shock in the 
flow, and nozero initial curvature are shown to 
significantly affect the aeroelastic behavior. A 
conlparison of the aerodynamic loads predicted 
by 3rd order piston theory, the Euler equations 
and the Navier Stokes equations suggests that 
the solution of the fully coupled aerothermoe- 
lastic problem may be necessary to fully under- 
stand the aeroelastic behavior of a panel in hy- 
personic flow. 

Nomenclature 

Panel dimension in 
streamwise direction 

speed of sound 
Coefficient of sinusoidal term 
of of imposed temperature 
distribution 
Panel dimesion in spanwise 
direction 
Coefficient of constant term 
of imposed temperature 
distribution 
coefficients of hyperboloid 
representation of vehicle 
body 
Pressure coefficient 
Coefficient of streamwise 
linear term of imposed 
temperature distribution 
Plate stiffness in the x and y 
directions, respectively 
Coefficient of spanwise linear 
term of imposed temperature 
distribution 
Coefficient of bilinear term of 
imposed temperature 
distribution 
Moduli of elasticity in x,y 
directions respectively 
Airy stress function 
Nondiinensional Airy stress 
function, F/ D, 
Homogeneous and prticular 
parts of F 
Shear modulus 
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Panel thickness 
Length of vehicle 
Mach number 
Thermal moment intensity 
result ants 
Thermal stress intensity 
result ants 
Aerodynamic load 
pressure 
pressure in the panel cavity 
Nondimensional curvature 
coefficients in the 
quadratic/sine pane! shape 
equation 
Thru- thickness temperature 
coefficient 
Time 
Nondimensional time used in 
EN 0 calculations 
Temperature distribution on 
the panel 
middle surface displacement 
in x direction 
~enera l i zed  coordinates of 
panel motion 
middle surface displacement 
in y direction 
Velocity of flow 
Nondimensional transverse 
panel displacement 
coordinates for panel 
coordinates for vehicle 
surface 
Shape of initially curved 
panel 
Nondimensional curvature 
coefficients of the 
quadratic/sine panel shape 
Nondin~ensional curvature 
coefficients of the double sine 
panel shape 
Coefficients of thermal 
expansion in s ,y  directions 
respectively 
sho cl; angle 
structliral damping 
parameter 

middle surface strain 
components 
ratio of specific heats 
flow deflection angle 
curvatures 
Nondimensionad dynamic 
pressure, ~ V ~ ~ ~ ( D , A I ~ ) - ~  
Critical value of X a t  which 
the linear system becomes 
unstable 
Air viscocity 
1 - vxyvyz 
Poisson ratios of orthotropic 
material 
non-dimensional coordinates 
in the x and y directions 
free stream air density 
panel density 
stress components 
Nondimensional time 
derivative with respect to 
time 
value a t  undisturbed flow 
value on the surface of piston 
value behind the shock 
nondimensional quantities 
critical buckling value 

1. Introduction 

Renewed interest in the design of hypersonic 
vehicles motivated by the National Aerospace 
Plane (NASP), a,nd its more recent successors, 
has generated a substantial number of new stud- 
ies dealing with the aeroelastic, aerothermoelas- 
tic, and aeroservoelastic behavior of a vehicle 
representing a generic hypersonic configuration 
[I, 2, 3, 41. While these studies are valuable, 
they have been based on a number of simpli- 
fying assumptions, the most restrictive of these 
being the use of linear piston theory [S] for cal- 
culating the aerodynamic loads. 

Many papers have been published on panel 
flutter; however the emplmsis in the ma.jority of 
these studies was on the supersonic regime in 



the range 2 < M < 4. Furthermore, most of 
these papers have enlphasized the case of flat 
panels using piston theory. Some more recent 
papers [ G ,  7, 8, 9, 101 have dealt in a some- 
what cursory manner with panel flutter a t  hy- 
personic speeds involving aerodynamic heating 
using some simplifying assun~ptions. However, 
these papers have avoided some fairly important 
aspects of the problem, such as the panel loca- 
tion on the surface of the hypersonic vehicle and 
the validity of using piston theory in the hyper- 
sonic flight regime, which have been addressed 
in [Ill. 

Flutter of curved isotropic pa.nels has been 
studied by Dowel1 [12, 131 for both two dimen- 
sional (2D) and three dimensional (3D) config- 
urations and more recently by Bismarck-Nasr 
[14]. A linear flutter analysis of 3D composite 
shells was performed by Pidiparti and Yang [15] 
using the finite element method. 

This paper is a sequel to  our previous pa- 
per [Ill by introducing an improved forinula- 
tion and solution process involving the type of 
curvatures that  one would normally encounter 
on the surface of a hypersonic vehicle. It also 
differs from previous research in several impor- 
tant  aspects: (1) The effect of shallow curvature 
is carefully incorporated into the derivation of 
the equations and it is shown that  this signif- 
icantly conlplicates the solution, which repre- 
sents an aspect of the problem not noted pre- 
viously; (2) thermal distributions are allowed 
both across the span as well as the thicl<ness 
of the panel; (3)  results obtained in a range of 
high dynamic pressure in the post-critical flut- 
ter region are shown t o  eshibit limit cycle be- 
havior whicll has interesting characteristics not 
noted before; and (4) to assess the influence of 
the aerodynamic assumptions used, a compar- 
ison of piston theory with Euler solutions and 
a complete Navier-Stokes solution is also pre- 
sented, generated for prescribed panel motion 
in hypersonic flow. 

2. Formulation of the Problem 

The geometry of the panel is shown schemati- 
cally in Fig. 1, together with the external flow 
orientation. It is assumed that  the pa,nel is 
built of an orthotropic ma.teria1 characterized by 
four elastic constants Ex, E,, uxy and v,,, and 
thermal expansion coefficients a,, a,, where the 
thermal expansion coefficient in the xy  direc- 
tion is assumed t o  be zero for the orthotropic 
case. The panel is loaded by a transverse aero- 
dynamic load and is subject to  a tempera.ture 
change from the initial stress-free state. 

In this study the structural model is based 
on an fairly straightforward extension of Mar- 
guerre plate theory [16] t o  include orthotropic 
panels. Marguerre plate theory can account for 
initial shallow curvature of the panel as well as 
geometric nonlinearity associated with moder- 
ate deflection, which is similar to  Von Karman 
plate theory for flat plates. The plate equations 
contain terms associated with geometric nonlin- 
earity, initial curvature, and the resultant cou- 
pling between them. The equations are derived 
for a general orthoropic panel. These equations 
are solved in nondinlensional form, and thus the 
panel is characterized by the nondimensional 
quantities E,/ Ex, GI Ex, u,, , u,,, a,, and a,. 

The middle surface strains and curvatures of 
Marguerre plate theory are given by 

and 



The stress-strain relations are given by 

With these assumptions the equations of motion 
for the orthotropic panel can be written in the 
following manner. 

d 2 F  B2(w + 2) B2M: 
2-  

d x d y  d x d y  +822 + 

where F in Eq. (4) is the Airy stress function, 
given by 

B 2 2  B2w B2Z B2w d 2 Z  d2w 
-- +--- 2- - 
8x2 By2 B y 2  a x 2  d x d y  dxBy 

where the following definitions have been used. 

The the rn~a l  stress and moment intensit,y resul- 
tants are given by 

Ey a,) T z  d t  ( 8 )  

The boundary conditions associated with this 
problem are those corresponding t o  a simply 
supported pla.te along its four edges. It should 
also be noted that  the Marguerre equations for a 
shallow curved panel are appropriate when the 
criterion for shallowness is defined as (h/R,)  < 
0.02, where R, is a representative ra.dius of cur- 
vature. 

2.1 Aerodvnainic Load 

Accurate representation of the unsteady a.ero- 
dynamic load in hypersonic flow is quite diffi- 
cult because high temperature effects, viscosity, 
and a chemically reacting boundary layer can 
be important. The aerodynamic loads in this 
study are obtained assuming inviscid,continuum 
hypersonic flow over a. slender body. In this 
case the shock wave lies close t o  the body and 
the shock angle is small. Third order piston 
theory[5], given by Eq.(lO), is used t o  calculate 
the aerodynamic load; and the validity of this 
assumption is esamined later in the paper. 

where 

v, = qAJ1 -+-+--  
( 8 2  d z  d w  BN vl at 

The values of the flow parameters behind the 
shock may be calculated using the oblique shocli 
relations given by [17] 



where /3 is obtained from 

tan Bb = 2 cot ,B 

Equation (12) may be solved for /3 for a given 
value of Bb. There are two solutions for ,B; the 
"weak shock" solution is chosen because it is 
the  physically correct one for the region of the 
vehicle located far from the blunt nose. In this 
region, the flow deflection angle is small and the 
shock angle approaches the mach angle, which 
is the limiting weak shock solution for small Bb 
[17]. The oblique shock relations may be simpli- 
fied in the case of hypersonic flow [lS] using the 
hypersonic similarity parameter, I< = Mo0Bb, 
so that  /3 is given as an  explicit function of I<. 
However, the exact relations are used in this 
study because only minor additional program- 
ming effort is required for their implementation. 

Determining the range of validity of piston 
theory, wllen compared t o  more refined the- 
ories based on computational fluid dynamics 
(CFD), is an important question which is ad- 
dressed in in a later section, where piston theory 
is compared t o  both the Euler equations and the 
Navier-Stokes equations. Also, while the use of 
the oblique shock relations is justified by the 
exploratory nature of this study, the presence 
of high temperature and real-gas effects in the 
flow over a hypersonic vehicle may significantly 
modify the tlie properties of the shock. 

2.2 Temperature Distribution 

The aerodynamic lnodel used in this study is 
based on the assumption that there is no inter- 
action between the flow and the panel tcmpera- 
ture and the vehicle is flying a t  constant speed. 
Temperature effects due to  aerodynamic heat- 
ing are included hy prescribing a temperature 
distribution given by 

This contains a through the thickness varia- 
tion of the sinusoidal term which results in 
nonzero thermal moments experienced by the 
panel. The effect of any term in the temper- 
ature distribution represented by Eq. (13) on 
the flutter behaviour is determined by setting 
all but that  particular coefficient t o  zero. 

The critical buckling temperature for a flat, 
simply supported orthotropic plate exposed t o  
a uniform temperature distribution is given by 

For a given orthotropic panel, T* is determined 
by evaluating Eq. (14) for increasing combina- 
tions of the integers m, n starting from m, n = 1 
and choosing the smallest value of T*(m, n). 
For a square isotropic panel, the lowest value 
occurs for m, n = 1 and is given by 

The critical buckling temperature for a curved 
panel may be obta.ined numerically by gener- 
ating time history data  for the heated, curved 
panel with the aerodynamic load equal t o  zero, 
and increasing the temperature until static 
buckling is observed. 

2.3 Mat hematical Description of 
Initial Curvature 

A panel located on the surfa.ce of a hypersonic 
vehicle will in general posess a small a,mount 
of initial ~urvat~ure ,  as shown in Fig. 2. Two 
ma.thematica1 descriptions of the initial panel 
sha,pe are used in this study, as represented by 
Eqs. (15) and (161, respectively 



where 2 = Z l h ,  = x l a ,  and 7 = y/b. Equa- 
tion (15) implies a parabolic panel shape vari- 
ation in the y-direction and a sinusoidal vari- 
ation in the x-direction that  closely approxi- 
mates the curvature of a panel located on the 
surface of a generic hypersonic vehicle. The co- 
efficients, P1-P3, are obtained by fitting a,n m a -  
lytical expression which approximates the shape 
of a generic hypersonic vehicle to  the dimen- 
sions of the NASP Demonstrator model [3] and 
performing a change of coordinates to  a 1oca.l 
system located a t  the desired position on the 
vehicle body. An analytical expression which 
approximates such a configuration is a hyper- 
boloid of two sheets, described by 

which represents a hyperboloid shifted on the 
3-axis such that  the vertex of the right sur- 
face is located a t  the origin. The parameters 
cl ,  cz, and c3, which determine the dimensions 
of the hypcrboloid, are selected so as t o  resem- 
ble the dimensions of the NASP (considered as a 
generic hypersonic vehicle). The algebraic steps 
required to  obtain the expression for the vehicle 
body as a function of the local coordinates of 
the panel arc quite lengthy and the details are 
omitted here. 

The double sine series description of the ini- 
tial panel geometry, Eq.(lG), is included for 
comparison purposes and a.s another possible 
shape for a curved panel. 

3. Method of  Solut ion 

The resulting non1inea.r partial differential 
equations are solved using the global Galerkin 
method which has been freclucntly used for this 
class of problems [19, 20, 21, 221. It is as- 
sumed that  the panel is simply supported; this 
a.ssumption simplifies the choice of the slmpe 
functions and it. also produces conservative sta- 
bility boundaries. 

where 

The solution procedure consists of two parts, 
finding a solution for the nondimensionalized 
Airy stress function F ( J ,  7 )  = F/D,, and then 
applying Galerkin's method to  obtain a set of 
nonlinear ordinary differential equations. The 
Airy stress function which satisfies Eq.(5) con- 
sists of a homogeneous part,  Fh and a particu- 
lar part,  Fp. The particular solution is obtained 
first, and must reproduce all the terms on the 
right hand side of Eq.(5) when substituted into 
the left hand side. The mathematical details of 
obtaining the particular solution as well as the 
implementation of Galerltin's method for pro- 
ducing a system of ordinary differential equa- 
tions in time are quite lengthy. For the conve- 
nient curvature representation given by Eq.(lG), 
manual derivation of the appropriate terms is 
feasible. IIowevcr, for the curvature given by 
Eq.(15) the algebraic manipulations required 
the use of the syml~olic software Macsyina [23]. 

The homogenous solution satisfies Eq.(.5) 
with the right hand side set to zero. This is 
obta.ined by assuming a solution in the form 

The coefiicients C1, C2, and C3 are obtained 
by enforcing the in-plane boundary conditions, 
which imply zero mean shear and zero mean 
displacements a t  the panel boundaries [19]. For 
the curvature representation given by Eq.(lG), 
one obtains 



where 

The expressions for the corresponding coeffi- 
cients for initial curvature given by Eq.(15) are 
very lengthy and so are the mathematical de- 
tails associated with finding the particular so- 
lution corresponding to  both curvature expres- 
sions. An outline of this solution can be found 
in [19]; however the details are not presented 
here 

Next the solution for F and the assumed solu- 
tion for w(E, 7 ,  T ) ,  Eq.(lS),  are substituted into 
the ecluatioll of motion, Eq.(4), and the aerody- 
namic loading term, Eq.( lo) ,  after appropriate 
nondimensionahzatioll. The spatial dependence 
is removed by applying Galeskin's method. 
When implementing Galerliin's method, ATl 
modes are used in the s-direction and N,,  modes 
are used in the y-direction, wllicli is perpcndic- 
ular t o  the flow direction. Tlie solution is sensi- 
tive to  the number of niodes used and therefore 
the convergence as a function of the number of 
modes is also considered. The resulting coupled 
ordinary nonlinear differential equations for the 

modal coefficients, T,,, are solved by direct nu- 
merical integration on a digital computer. The 
numerical integration routine used in this study 
was DDEABM, a code based upon the Adams 
PECE formulas [24]. 

4. Alternative Renresentation of the 
Aerodvnamic Load 

Piston theory, which was developed for inviscid, 
isentropic, and perfect-gas supersonic flows, has 
been used t o  model the unsteady aerodynamic 
loads in many recent aeroelastic studies involv- 
ing the hypersonic regime. However, practical 
hypersonic flow fields are viscous and sometimes 
require the treatment of real gas effects. The 
viscous effect is important for flow inside the 
boundary layer, and the real gas effects become 
important when the gas temperature is higher 
than about 1000°Ii [lS], which is often the case 
for hypersonic flow over practical aerospace ve- 
hicles. Therefore, the validity and range of ap- 
plication of piston theory for hypersonic flow 
applications needs to  be carefully esa~nined. 

In this paper, we assess the validity of pis- 
ton theory by comparing it with results ob- 
tained from solutions of the complete Eu- 
ler and Navier-Stokes equations in a two- 
diinensional panel problem with a prescribed 
wall motion. Figure 3 shows a schematic 
of the two-dimensional hypersonic flow field 
used to validate the piston theory. The 
free-stream hlach number is 10.05, and the 
Reynolds number is 3.S3 x 10" The panel 
oscillates with a prescribed motion given by 
y = A sin sin wt.  where A = 0.002m, w = 
1.206 x 1 0 3 ~ ~ ~ ~ 1 / . w ~ ,  12 = 2. and L = 0.45m. 
The gas is assumed to be a perfect gas with 

= 1.4, and the viscosity coefficient of the gas 
is coinputed by the Sutherland formula. 

Tlie results of the compressible Navier-S tokes 
equations, which include both the mo~lientum 
and energy equations in conservation law forms, 
are presented in this paper along with the re- 
sults of the Euler solutions reported in a pre- 



vious paper [ll]. The Navier-Stokes equa- 
tions are solved by the explicit second-order 
time-accurate essentially nonoscillatory (ENO) 
schernes [25]. More details of the numerical 
method and the validation of the computer code 
can be found in [26]. The boundary conditions 
used in the computations were described in [ll]. 
For the Navier-Stokes equations, non-slip and 
isothermal boundary conditions are used on the 
panel surface. A 258 x 290 Cartesian grid and 
a CFL number of 0.5 are used in the computa- 
tions. 

Figure 4 shows the pressure coefficient on the 
mid-panel surface as a function of the nondi- 
mensional time defined by f = wtl8O. The solu- 
tions of the first-, second-, and third-order pis- 
ton theory are compared with those from the 
Euler and Navier-Stokes equations. The results 
show tha t  the nonlinear second- and third-order 
piston theory compares very well with the solu- 
tions from the unsteady Euler equations, and 
the  linear first-order piston theory is not accu- 
rate enough for the present test problem. How- 
ever, the Navier-Stokes solutioils predict a much 
lower surface pressure than the Euler equations 
or piston theory. The viscosity in the boundary 
layer has a damping effect on the surface pres- 
sure because the surface motion occurs mainly 
within the boundary layer, which serves as a 
buffer zone between the external flow and the 
vibrating wall. 

These results show that  more accurate aero- 
dynamic models are needed t o  account for the 
viscous effect in the boundary layer. One possi- 
ble method is t o  model the boundary layer as a 
modified wall surface to  account for the bouncl- 
ary layer thicliness. The modified model can be 
checked by numerical con~putations of the full 
Navier-Stokes equations. Similarly, an aerody- 
namic model t o  account for the high tempera- 
ture real gas effects can also be checked by the 
numerical sirnulation of the Xavier-Stokes equa- 
tions with real gas effects. 

5 .  Results and Discussion 

The majority of results obtained in this study 
are presented in the form of stable limit cycle 
amplitudes as a function of the non-dimensional 
dynamic pressure, A.  Typical limit cycle curves 
are obtained by calculating 5-8 amplitudes for 
values of the dynamic pressure parameter, A, 
beyond the value of A,,, which represents the 
critical dyna.mic pressure a t  which the linear 
system becomes unstable. An example of this 
type of plot is shown in Fig. 5., which com- 
pares limit cycle curves for both isotropic and 
orthotropic pa.nels with results given in previ- 
ous studies. Results for the isotropic case were 
taken from Fig. 19 of [21] a,nd those of the or- 
thotropic case were taken from Fig. 3 of [lo], 
converted to  t.he nondimensional dynamic pres- 
sure definition employed in this study. Overall, 
the a.greement in both cases is quite good. 

To ensure that  temperature effects are cor- 
rectly incorporated in the formulation, results 
for an isotropic pa.ne1 subject to  uniform tem- 
perature rises of TIT* = 0.5 a.nd 1.0 were gen- 
erated and compared with da,ta from [21]. The 
plot shown in Fig. 6 shows excellent agreement. 
The data. used for the validation studies shown 
in Figs. 5 and G is given in Table 1. 

Properties used in this study for both 
isotropic and orthotropic panels are displayed in 
Table 2. Unless stated otherwise, the properties 
listed in the table were used for generating the 
results described. Atmospheric properties were 
taken a t  an altitude of 90,000 ft because it cor- 
responds t o  A1 = 10, for a hypotl~etical flight 
trajectory of the NASP X-30 vehicle [I]. The 
value shown for structural dainping was chosen 
to accelerate the decay of the transient solution, 
which is quite slow in the absence of structural 
damping, due t o  the small amount of aerody- 
namic damping present a t  90,000 ft .  As can 
be seen from Fig. 3, 5% structural damping 
has only a slight effect on the limit cycle behav- 
ior. IIowever, as a practical consideration, the 
small ainount of aerodynainic damping present 
at  the high altitudes encountered for a hyper- 
sonic flight envelope may prove to  be inadequate 



for achieving stable limit cycles unless damping 
is augmented by artificial means. 

A convergence study was carried out for a flat, 
unheated orthotropic panel and the results are 
shown in Fig. 8. The graph reveals interest- 
ing aspects of the convergence behavior of the 
solution a t  high values of post-critical dynamic 
pressure. The 8 x 1 mode solution can be con- 
sidered to  be converged. An examination of the 
modal coefficients reveals that  the higher modes 
do not significantly contribute to  the motion at 
the dynamic pressures that  are plotted. The 
6 x 1 mode solution is essentially converged, ex- 
cept for a small interval of dynamic pressure, 
2400 < X < 2850. The 4 x 1 mode solution 
slightly underpredicts the value of A,,, and over- 
predicts the limit cycle amplitude for larger val- 
ues of A. At X = 1800, the flutter oscillations 
for the 4 x 1 mode solution cease to  be of con- 
stant amplitude and simple harmonic motion in 
time, and this is reflected in Fig. 8 by the er- 
ratic shape of the curve a t  values of X above 
1800. Similar behavior is observed in the region 
of X for wllich the 6 x 1 mode solution is not 
converged. 

It was found that  the 8 x 1 mode solution 
also exhibits this behavior, albeit for very high 
values of A. At values of post-critical dynamic 
pressure where the limit cycle curve is smooth, 
the panel oscillates with constant amplitude and 
with simple harlnonic motion in time. The 
phase plane plot of the panel motion in this re- 
gion is of an  ellipse. Figures 9 and 10 show the 
change in the nature of the phase plane plot 
for the 8 x 1 mode solution for X = 5000 and 
X = 6000 respectively. Figure 9 reveals that  the 
period has doubled and Fig. 10 reveals that  
the motion has become aperiodic. To deter- 
mine if the 8 x 1 mode solution is converged for 
X = 5000 and 6000, the equations were solved 
using 10 x 1 modes and 8 x 3 modes. Identi- 
cal results wcre obtained, and an examination 
of the modal coefficients for the 8 x 1 mode so- 
lution revealed that  the higher modcs do not 
significantly contribute to  the motion. 

It. appears that  aperiodic motions occur for 

the flat, unheated orthotropic panel a t  suffi- 
ciently high A. Similar behavior was recently 
observed by Hopkins and Dowel1 [27] for a can- 
tilevered isotropic plate. This behavior has also 
been observed by the present authors for heated 
panels, where it occurs a t  values of X that  are 
significantly closer t o  A,, than for the case of 
the unhea.ted panel. Further research is neces- 
sary to  better understand this behavior. 

To assess the influence of aerodynamic heat- 
ing on the flutter behavior, the temperature dis- 
tribution given by Eq. (13) was considered. 
Results are given for the orthotropic panel for 
the ratio of the temperature coefficient t o  the 
critical static buckling value of that  coefficient. 
The static bucklillg values of the coefficients are 
given in the following table. 

The value of ET* is twice the value of CT* and 
DT*, and four times the value of BT*. These 
coefficients appear in the equations of motion 
through the coefficients of the homogeneous so- 
lution for p, Eq.(20). This equation reveals that  
consideration of only one of these four coeffi- 
cients is necessary, as the results for each will 
be identical. 

The sinusoidal temperature distribution a,p- 
pears in the equations of motion through the co- 
efficients of the homogeneous solution for F, the 
particular solution for F, and thermal moments 
if sl # 0. Note that  the actual coefficient of 
the sinusoidal tempemture term is AT/2 when 
sl = 0. Furthermore, when sl  = 1, nonzero 
thermal moments are present in the panel and 
a unique buclilil~g temperature does not exist. 
For this case results are presented with respect 
t o  the buckling temperature for s l  = 0. 

Results for the uniform temperature distribu- 
tion (and equivalently for the linear and bilinear 
distributions) are shown in Fig. 11 for values 
of BT/BT* equal to 0, O..5, and 1. Increasing 
the ratio has a strong destablizing effect on the 
panel. For the ratio of 1, the curves are very 



steep and the  aperiodic behavior described pre- 
viously for the  unheated panel occurs in the case 
of the heated panel; in this case for values of X 
above about 350 for BT/BT* = 1. 

Results for the sinusoidal temperature dis- 
tribution are shown in Fig. 12 for values of 
AT/AT* equal t o  0, 0.5, and 1, and for sl = 0 
and 1. For sl = 1.0, the panel experiences a 
significant static deflection prior t o  the onset 
of flutter. The static deflection is due to  the 
presence of thermal moment resultants in the 
equations of motion. For AT/AT* = 1.0 and 
s l  = 1.0, a discontinuity exists in the curve a t  
A,, = 200, indicating that  the onset of flutter 
is quite sudden. The curve plotted is for va.1- 
ues of X for which the limit cycle oscillation re- 
mains simple harmonic. For AT/AT* = 1.0 and 
sl = 0.0, the curve is not smooth. A typical 
phase plane plot for this panel is shown in Fig. 
13. Although the motion is periodic, it is not 
simple harmonic. 

A panel located on the surface of a hypersonic 
vehicle will typically be exposed to  flow aft of a 
shock caused by the vehicle shape rather than 
flow a t  its free stream conditions. Fig. 14 gives 
limit cycle curves for several values of flow de- 
flection angle, which in this study is taken to  
be equal t o  the slope of the vehicle surface. As 
a useful reference value, a flow deflection angle 
of 3.6' is obtained if the the vertical cross sec- 
tion of the NASP Demonstrator model is ap- 
proximated by a triangle with the dinlensions 
given in [29]. It is apparent that  the presence of 
a shock has a strong destablizing effect on the 
panel flutter, and larger flow deflection angles 
lead to  lower critical dynamic pressures. Also, 
the slope of the limit cycle curve is considerably 
steeper when a shock is included in the formula- 
tion, indicating that  the panel may experience 
damaging stress levels a t  post-critical dynamic 
pressures which are closer to the critical value 
than is the case when a shock is not included. 

Initial curvature was incorporated into the 
model using Eq.(16) and the solution was ob- 
tained for various values of Fig. 16 shows 
the limit cycle curves for 2i1 = 0,0.5,1.0,1.5, 

and 2.0 for values of X below the appearance of 
aperiodic motion. As ca.n be seen from Eq. ( lo) ,  
nonzero initial curvature introduces a static 
forcing tern1 into the a,erodyna.mic load, result- 
ing in significant nonzero static displacements 
a t  values of X below A,,. In genera,l, the presence 
of nonzero initial curvature seems t o  increase 
the stability of the simply supported panel, al- 
though the value of A,, is not a monotonically 
increasing function of initial panel height. For 
example, the value of A,, for 2i1 = 1.0 is 1560, 
which is significantly greater than the values of 
A,, for z ; ~  = 1.5 and 2.0. Qualitatively simi- 
lar results were obta,ined by Dowel1 [13] for the 
simply supported isotropic panel with consta.nt 
curvature in the x- and y-directions. 

6. Concluding Remarks 

The flutter of a shallow curved orthotropic 
panel, undergoing moderate deflections in hy- 
personic flow a t  high altitudes was studied. The 
effects of dynamic pressure variations, tempera- 
ture, and curvature, together with the location 
of the panel on the surface of a generic hyper- 
sonic vehicle. 

Conventional thin panels appear to be quite 
sensitive to  small temperature variations. Cur- 
vature also has an important influence on the 
dynamic behavior of panels. Exceeding the lin- 
ear stability boundaries can lead to  rapid in- 
creases in limit-cycle amplitudes, which may af- 
fect the structural integrity of a hypersonic ve- 
hicle. 

The aerodynamic load obtained from piston 
theory differs substantially from that  calculated 
from the solution of the complete Navier Stokes 
equations using CFD; for a prescribed time his- 
tory of pa.ne1 motion; which resembles the dy- 
namics of a fluttering plate. Results based on 
third order piston theory caa be quite inaccu- 
rate. 

It is evident that the understanding of aeroe- 
lastic belmvior in hypersonic flight requires con- 
sidera,ble a,dditional research. 
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alb 
a l h  
E Y  / E x  

"YX 

~ Y X l " X Y  

Mw 
a x  

a Y  1% 
altitude 

PWIPO 
modes 
order of 
piston 
theory 
structural 
damping 

I 
'I 

Isotropic 
1 
240 
1 
0.3 
1 
10 
1.25 x 
1 
n.a. 
4.167 x 
Gx 1 
1 

0% 

0.75 
0.5 

Orthotropic 
1 
300 
0.6452 
0.27 
0.6452 
15 
n.a. 
n.a. 
n.a 
0.005 
8x1 
3 

0% 

0.75 
0.5 

alb 
a lh  
EY / E x  

"YX 

"YXl"XY 

AIW 
a x  

a Y  l a x  
altitude 

PW / PO 

modes 
order of 
piston 
theory 
structural 
damping 

I 
17 

Isotropic 
1 
500 
1 
0.3 
1 
10 
1.2 x 10-5 

1 
90,000 ft 
1.071 x 
6x1 
3 

5% 

0.75 
0.5 

Orthotropic 
1 
500 
20 
0.3 
2 0 
10 
2.1 x 10-5 

0.001 
90,000 ft 
1.928 x lo-' 
8x1 
3 

5% 

0.75 
0.5 

Table 1: Data Used in the Validation Studies 
Shown in Figs. 5 and 6 

Table 2: Data Used in the Calculations 

/ 

Figure 1: Definition of Panel Geometry Figure 2: Generic hypersonic vehicle/panel 
combination 



Figure 3: Schematic of the 2-D unsteady Figure 4: Pressure coefficient on the mid-panel 

hypersonic flow field used to validate piston surface as a function of nondimensional time 

theory (f = wtl80). 

, C O W A R I S O N  O F  L I M I T  CYCLE CURVES 
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Figure 5: Unheated isotropic and orthotropic 
panels - comparison with previous research 

L I M I T  CYCLE CURVE - UNIFORMLY HEATED I S O T R O P I C  PANEL 
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Figure 6: Uniformly heated isotropic panel - 

comparison with previous rcsea.rch 



ORTHOTROPIC PANEL - EFFECT OF STRUCTURRL DAMPING 

8' 

CONVERGENCE OF SOLUTION - FLAT ORTHOTROPIC PLATE 
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Figure 7: Effect of Structural Damping On Figure 8: Convergence of the solution 
Limit Cycles 

FLAT, UNHEATED ORTHOTROPIC PANEL: k=5000 
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Figure 9: Phase plane plot of flat, unheated 
orthotropic panel for X = 5000 

FLAT, UNHEATED ORTBOTROPIC PANEL: X=6000 
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Displacemnt, w/h 

Figure 10: Phase plane plot of flat, unheated 
orthotropic panel for X = GOO0 



L I M I T  CYCLE CURVES - ORTHOTROPIC PANEL 
WITH UNIFORM TEMPERATURE DISTRIBUTION 

L I M I T  CYCLE CURVES - ORTHOTROPIC PANEL WITH 
SINUSOIDAL TEMPERATURE DISTRIBUTION 
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Figure 11: Effect of uniform temperature 
distribution - flat orthotropic panel 

I This graph is also obtained for the line 
and bilinear temperature distributions. 

PHASE PLANE PLOT: FLAT ORTHOTROPIC PANEL WITH SINUSOIDAL 

TEMPERATURE DISTRIBUTION, A 4 A T 1 = l .  0,  s l = 0 . 0 ,  blOO 
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Figure 13: Phase plane plot of flat orthotropic 
panel with sinusoidal temperature distribution 

for X = 100, AT/AT* = 1.0, s l  = 0 
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Figure 12: Effect of sinusoidal temperature 
distribution - flat orthotropic panel 

L I M I T  CYCLE CURVE - ORTHOTROPIC PANEL WITH SHOCK 
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Figure 14: Effect of shock 



LIWIT CYCLE CURVES - EFFECT OF INITIAL CURVATURE 
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Figure 15: Effect of initial curvature as given 
by Eq.(16) - unheated orthotropic panel 


