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Abstract 
This paper is concerned with direct numerical sim- 

ulation of twc-dimensional transient hypersonic flow 
using the essentially non-oscillatory (ENO) schemes 
for the Euler and Navier-Stokes equations. The EN0 
schemes are used because their shock capturing capa- 
bility and uniform high-order accuracy away from the 
shock waves are particularly suitable for transient hy- 
personic flow calculations. The accuracy of the EN0 
schemes are numerically tested by applying them to 
linear viscous model equations and the Navier-Stokes 
equations. Two applications are considered for un- 
steady hypersonic flow simulation. The first applica- 
tion is a shock-shock interference heating problem. The 
unsteady mechanism of type IV shock interference flow 
is numerically investigated through test cases of differ- 
ent Reynolds numbers. The results show that the in- 
herent unsteadiness of interference flow is dominated 
by the viscous interactions at high Reynolds numbers. 
The second application is the interaction of an p l a  
nar acoustic wave with a bow shock in bypersonic flow 
over a cylinder. Numerical results are compared with 
simple analytical solutions. The results show that the 
disturbances are greatly amplified near the stagnation 
point, which demonstrates the importance of includ- 
ing the bow shock in the direct numerical simulations 
of the receptivity of hypersonic boundary layer to  free 
stream disturbances. 
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Introduction 

The unsteadiness of hypersonic flow plays an impor- 
tant role in many viscous hypersonic flow fields that 
are important for developing future hypersonic vehi- 
cles. Two hypersonic flow problems involving unsteadi- 
ness of the flow are studied in this paper. 

The first flow problem is the shock-shock interference 
heating flow created by the interaction of an impinging 
shock and a bow shock wave on the cowl-lip surface 
of a hypersonic inled']. The interference heating prob- 
lem is a crucial problem in designing hypersonic vehi- 
cles because the heating rates generated on the surface 
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can be an order of magnitude higher than those with- 
out the interaction with the impinging shock. Among 
the six types of shock interference patterns classified 
by Edneyl'], type IV interference occurs when the im- 
pinging shock intersects near the normal region of the 
bow shock. This intersection results in the formation 
of a supersonic jet bounded between two shear layers. 
When the jet impinges on the surface, a jet bow shock 
and a small stagnation region of high pressure and high 
heating rates are created on the surface. It has been o b  
served in experimentsI3I and numerical simulations[4-q 
that the type IV interaction flow is inherently unsta- 
ble. This instability has strong effect on the heating 
rates to the body surface[']. The unstable mechanism, 
however, is currently not well understood. 

The second flow problem is the interaction of a bow 
shock wave with free steam disturbances in hypersonic 
flow over a cylinder. This problem originates from the 
studies of receptivity to  free-stream disturbances of hy- 
personic boundary layer. The receptivity is an impor- 
tant aspect of the transition from laminar to turbu- 
lent state[*]. For hypersonic flow over a blunt body, 
the interaction of free-stream disturbances with the 
bow shock and with the acoustic waves reflected from 
the body produces considerable increases in the dis- 
turbance magnitudes. In order to capture more realis- 
tic situation of leading-edge receptivity of hypersonic 
boundary layer, such interaction should be taken into 
account. MorkovinlgI assessed the flow disturbances at 
a blunt body owing to supersonic freestream distur- 
bances using a simplified one-dimensional linear ana- 
lytical model, but the simplified analysis can only be 
applied to the disturbances along the stagnation line. 

To study the transient flow phenomena in the two 
preceding applications, linear stability analysis the flow 
is difficult because of the presence of shock waves in 
the flow fields. In this paper, the transient hypersonic 
flows are studied by direct numerical simulation. Simu- 
lation of transient hypersonic flows requires numerical 
methods not only to capture the shock waves with- 
out spurious numerical oscillation but also to main- 
tain high-order spatial and temporal accuracy in the 
smooth parts of the transient flows. 

The essentially non-oscillatory (ENO) schemes["], 
which are uniformly high-order accurate shock c a p  
turing schemes, are used in this paper to perform 

1 



the direct numerical simulations of transient hyper- 
sonic flows. The EN0 schemes are chosen over the 
TVD schemes, which are often used in hypersonic flow 
calculations, because their shock capturing capability 
and uniform high-order accuracy away from the shock 
waves are particularly suitable for transient hypersonic 
flow calculations. Though the TVD schemes work well 
for steady flow computations, they may not be a p  
propriate for transient hypersonic flow calculations b s  
cause they reduce to first-order accuracy at local ex- 
trema of the smooth parts of the solutions even though 
they are high-order accurate elsewhere. On the other 
hand, the EN0 schemes, in principle, can resolve d i s  
continuity well and can achieve uniformly high-order 
accuracy when the flow is smooth. These properties of 
EN0 schemes seem to be ideal for the direct simulation 
of transient hypersonic flow. The EN0 schemes have 
been applied to many fluid flow problems. Examples 
of these applications can he found in Refs. [ll-161 and 

There is still an uncertainty concerning the EN0 
schemes. The EN0 schemes use a polynomial re- 
construction procedure based on an adaptive stencil 
to avoid interpolating flow variables across discontinu- 
ities. As a result, the EN0 schemes are nonlinear even 
when they are solving linear equations. Rogerson and 
Meiburgf'v showed that the EN0 schemes lose their 
accuracy when calculating linear wave equation with 
certain initial conditions. Shu[''I consequently showed 
that this unnecessary loss of accuracy can be avoided 
by modifying the selection algorithm for interpolation 
stencil. However, the previous studies on validating 
the numerical accuracy of the EN0 schemes have been 
mainly conducted to  convective wave equations. The 
effect of accumulation of numerical errors of the non- 
linear EN0 schemes for viscous flow calculation needs 
to be futher tested. 

Therefore, the objectives of the studies in this paper 
are: 

' d 
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1. We will test the numerical accuracy of the EN0 
schemes for solving a model convection-diffusion 
equation and for solving the Navier-Stokes equa- 
tions by grid refinement studies. The EN0 
schemes are based on the finite volume method 
for solving the Navier-Stokes equations, and are 
high-order accurate both in inviscid and in viscous 
terms. 

2. We will continue the work of Ref. [7] to study the 
unsteady mechanism of the type IV shock-shock 
interference heating problem. The EN0 schemes 
of third-order accuracy in space and in time are 
used. The unsteady mechanism of the type IV in- 
terference heating problem will be investigated by 
numerical simulation of unsteady flow at different 
Reynolds numbers. The distributions of surface ,4' 

pressure and heating rates on the body surface will 
be compared with availableexperimental results in 
Ref. [3]. 

3. We will study transient hypersonic flows with free- 
stream acoustic disturbances over a circular cylin- 
der at various Mach numbers and frequencies. Nu- 
merical solutions along the stagnation line will be 
compared with analytical results in Refs. [9, 191. 
The effect of the bow shock on the disturbance 
field will be studied. 

Governing Equations and Numerical 
Formulation 

Details of the finite volume high-order accurate EN0 
schemes for the two-dimensional Euler and Navier- 
Stokes equations can be found in Refs. [13] and [7]. 
High-order approximation of both inviscid and viscous 
terms of Navier-Stokes equations is used in the present 
study. 

Governing Equations 
The two-dimensional Navier-Stokes equations writ  

ten in the conservation-law form in Cartesian coordi- 
nates are 

au at-, aF, aG, + - = o ,  aG, - (1) 
at aZ az ay ay -+-+-+- 

where U = [P,pu,pv,eIT, and 

F, = 

G, = 

P P 2  e = -  + -(u + 2) . 7 - 1  2 (3) 

The viscous stress and heat flux terms are given by 

aU. au. 2 auk aT 
0..  - -p(2+>--&.-), qi (4) 
'J - azj azi 3 "azk aZ 

where p is determined by the Sutherland's law, and K 

is determined hy assuming a constant Prandtl number. 

Finite Volume Formulations 

conservation Iaws can be written as 
In the finite volume method, the integral form of 
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Applying the above formula to a cell (if) located in 
the domainof [Z;-I/~, zi+l/z] x [ y j - ~ / ~ ,  yjt1/2], we will 
obtain 

solution is smooth. The loss of accuracy is due to the 
selection of the linear unstable stencils by the orig- 
inal adaptive stencil-choosing algorithm of the EN0 
schemes. Shu[’*] proposed a modification of EN0 
schemes to  maintain the order of accuracy of the 

.J at Aij schemes. The basic idea of this modification is to bias 
the adaptive stencils toward the linear stable central 
ones wherever the solution is smooth, The Shu>s mod- 
ification is used in this paper. 

- I - art, 1 - 
-+-(Fi+t,j-Fi-r,j+G;,,+t-Gi,,-~) = 0, (6) 

where Cij is the cell average value of u over the cell 
(i,j), and Fi*;,, and Gi,j*+ are flux integrals at inter- 
faces Si*+,! and Si,j*+ respectively. 

equation depends %n the-numerical approximation of 
flux integrals, Let and G-denote the numerical fluxes 
which approximate and G to (r+l)-th order of accu- 
racy, We can approximate the integrations by ~~~~i~ 
quadrature, 

- - 

The spatial accuracy of the finite-volume discretized Of Terms 
We use central difference formulas to evaluate the 

viscous terms at the cell interfaces. The recent work 
of ZhongLq adopted central difference formulas using 
cell-average valuez of flow variables at centroids to  a p  
proximate the viscous terms. This will lead to a second- 
order accurate scheme for the viscous terms even if the 

N 

where (z;*+,yk) are locations of the Gaussian- 
quadrature points a t  interface S;++,j and W I  are 
weights of Gaussian quadrature. For r-th order finite- 
volume scheme, we use N-point Guassian quadrature 
if 2 N -  15 r -< 2N. 

To evaluate the numerical fluxes at Gaussian quadra- 
ture points that are at the interface between two differ- 
ent cells, we apply different methods for inviscid and 
viscous flux terms. For inviscid flux vectors, we need to 
deal with the discontinuities of conservative variables 
at the interface by solving a Riemann problem. Since 
to solve a complete set of non-linear equations for the 
Riemann problem is very time-consuming, Roe’s a p  
proximate Riemann solver[”] is used in this paper. It 
has been shown that the Roe’s approximate Riemann 
solver may not satisfy entropy condition in calculat- 
ing flows with sonic transition. To avoid nonphysi- 
cal solutions, we use the entropy correction of Harten 
and HymanI2’l in the Roe schemes. For viscous flux 
vectors, we apply central difference formulas using the 
pointwise values of flow variables at adjacent cells to 
approximate the first-order derivatives of velocity and 
temperature. 

EN0 Reconstruction 
In order to implement Roe’s approximate Riemann 

solver, we need to evaluate the conservative variables, 
which are UL and UR, at the left and right sides of 
a cell interface. The EN0 reconstruction achieves uni- 
formly high-order accuracy by adaptively interpolating 
through the “smoothest” stencils to reconstruct point- 
wise values from cell average values. This adaptive 
interpolation avoids undesired oscillation near discon- 
tinuities. Details of the finite-volume EN0 reconstruc- 
tion can be found in Refs. [lo] and [13]. 

Rogerson and Meiburgl’v showed that the EN0 
schemes may lose high-order accuracy even though the 

- 
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approximation of inviscid fluxes is high-order accurate. 
Thus, we improve the accuracy of the work in Ref. [7] 
by applying high-order finite difference formulas to  a p  
proximate the viscous terms. For instance, we can use 
the following fourth-order difference formula to approx- 
imate the viscous terms as following 

where ui-1, ui, u;+l and u i t 2  are the point values at 
cell centroids obtained by high-order EN0 reconstruc- 
tion from cell-average values. While approximating vis- 
cous terms near the boundaries of a computational do- 
main, one-sided difference fotmulas are used to main- 
tain the same order of accuracy. 

Time Discretization 
For unsteady flow computations, the accuracy in 

time is as crucial to the resolution of flows as the accu- 
racy in space. For transient hypersonic flows, explicit 
TVD Runge-Kutta timestepping schemes[”l are used 
to achieve high-order accuracy in time. 

Curvilinear Coordinates 
In order to simulate realistic fluid problems with ar- 

bitrary geometry, we need to extend the study of EN0 
schemes to arbitrary geometry by a coordinate trans- 
formation. 

Boundary Conditions 
Non-slip boundary conditions with an isothermal 

wall are used. For inviscid fluxes at wall, we only need 
the wall pressure that are determined by the EN0 re- 
construction from the interior of flow field. At super- 
sonic upstream of the flow boundary, we set the flow 
variables to the known free-stream values. At  super- 
sonic outflows, all the values of conservative variables 
are extrapolated from the interior of the computational 
domain. 

Accuracy of EN0 Schemes 
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Linear Convection-Diffusion Equation 
In order to test the numerical accuracy of the E N 0  

schemes for solving the Navier-Stokes equations, we 
consider the following linear convection-diffusion equa- 
tion 

'd 
(9) 

with initial condition 

(10) 
4 u(z, 0) = sin AZ . 

The exact solution of the initial value problem can be 
obtained easily for comparison. The is the test case 
that the numerical results of the linear wave equation 
by using the original EN0  schemes were shown to lose 
order of 
in the computational domain -1 5 z 5 1. The 
Reynolds number of this convective-dissipative prob- 
lem is 

C L  Re = - = 400. 
P 

In the case of a very large Reynolds number, the linear 
model equation is reduced to the linear wave equation. 
Therefore, the results of numerical accuracy study will 
be similar to those in Refs. [17, 181 if Re is very large, 
Le., the EN0  schemes need modification for accuracy 
considerations. 

We computed the solutions of the present moderate 
Re case using the EN0 code for one period in time, i.e., 
at t = 2, with CFL = 0.1 (based on CFL = cAt/Az). 
We performed the numerical accuracy studies on six 
consecutively refined grids for EN0 schemes from first 
to sixth order accurate. For the EN0 schemes with 
spatial accuracies less or equal to four, the computa- 
tions were advanced in time by the TVD Runge-Kutta 
schemes of the same order in time as in space. For 
fifth and sixth-order EN0 schemes, the computations 
were advanced in time by the same fourth-order TVD 
Runge-Kutta schemes. The number of iterations was 
large enough to achieve a significant accumulation of 
error both in time and in space. The errors are com- 
puted at the cell center in L1 norm, 

1 

"1. We set c = 1 and p = 5 x 

(11) 

N 

(12) ~1 = -E Iu(zi) - uexact(zi)I. 
N i=1 

Results of both the EN0 and modified EN0 schemes 
are shown in Tables 1 and 2, where rc denotes the com- 
putational order of accuracy as 

Figure 1 shows the LI  norm as a function of the num- 
bers of grid points. The results show that the EN0 
schemes without modification do not lose accuracy as 
described in Ref. [17]. This may be due to the fact that '4 

when the EN0 schemes are applied to the model equa- 
tion above, the existence of viscous term damps out the 
propagating wave. Figure 2 shows the results of first 
to sixth-order EN0 schemes using 40 grid points com- 
pared with the exact solution. We can see the benefits 
of high-order EN0 schemes for this transient problem 
because of low dissipative effect for EN0 schemes. 

Relevant to hypersonic wall-bounded flows, we next 
tested the accuracy of the EN0  schemes in an initial- 
boundary value problem of the same equation with the 
following boundary conditions: 

U(0,t) = 0 , u(1,t) = 0 . (14) 

The solution of Eq. (9) with the boundary conditions 
above is composed of a set of eigenfunctions &(z) as 
follows: 

m 

u(z,t) = Anek"'&(z) 
n=l  

where 

An = 2 '  f(z) e-*=sin-z n?T dz , (16) 
1 

and f(z) is the initial condition, i.e., u(z, 0) = f(z). 

to be eigenfunctions b,,,. The exact solution is 
In the computations, we chose initial condition f(z) 

u(z,t) = e'-'&,. (17) 
The modified fourth-order EN0 scheme was used 

to solved the initial-boundary value problem. We set 
c = 1, p = 1 and I = 2. Solutions were obtained 
at t = 0.05 with CFL number based on inviscid vari- 
ables to be 0.001. Table 3 shows the results of modes 
m = 2 and m = 6. Figures 3 and 4 show the com- 
parison between numerical and exact solutions. The 
modified EN0 schemes perform well for this initial- 
boundary value problem. 

Stokes Oscillating Plate 
We next computed unsteady flow over an oscillat- 

ing flat plate using the third-order EN0 scheme. This 
problem can test the ability of our numerical schemes 
to accurately simulate an unsteady fluid motion sub- 
ject to both initial and boundary conditions. The semi- 
infinite fluid is at rest initially, and is set into motion 
when the solid plate at y = 0 begins to oscillate with 
velocity given by 

uplate = ug sin wt  , (18) 

The exact solution of this problem can be found in Ref. 

Although this is a one-dimensional problem, we im- 
plemented fully twedirnensional Navier-Stokes calcu- 
lation so that we could compare our numerical results 

[221. 
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with exact solution. Flow parameters were chosen to 
match the test condition in Rogers and Kwak[”]. The 
dimensionless frequency was set to unity. The veloc- 
ity uo was set to 40 m/s. Periodic boundary condition 
was used in 2 direction. The density, pressure, and 
temperature were assumed to be constant at both the 
wall and far field. 

Figure 5 shows numerical results at the end of the 
computations of nine periods using twenty grid points 
spacing from Y = 0 to Y = 6. The CFL number 
was 0.5. The figure shows that the numerical solutions 
agree well with the exact solution. The results indi- 
cate that high-order accurate EN0  schemes have good 
potential in simulating transient viscous flow involv- 
ing an unsteady solid wall. Figure 6 shows the results 
at t = 0.5 in which the initial transient solution can 
not be neglected. We performed the grid refinement 
study through 10, 20, 40 and 80 grids in y direction. 
Table 4 shows the absolute error computed for each 
case and indicates a discrepancy in asymptotic order of 
accuracy. By carefully examining our numerical solu- 
tions, we found that there are some small disturbances 
in density, temperature and pressure, which should be 
constant from theoretical study. These disturbances 
may result from the non-linear calculations of fluxes 
because we computed the full Navier-Stokes equations 
by the non-linear EN0  schemes. The source of these 
disturbances is not fully resolved by the current work 
and needs furtber investigation in the future. 

Type IV Shock Interference Heating 
Problem 

Figure 7 shows a schematic of type IV interference 
heating flow field, which was found to be inherently 
unstable due to the interaction among supersonic jet, 
shear layer, bow shock and impinging shock[’’ 4, ’, q. 
In this paper, the instability mechanism of the type IV 
shock interference problem was investigated by numer- 
ical simulation of laminar hypersonic flow using the ex- 
plicit EN0  schemes with third-order accuracy in time 
and space. The effect of Reynolds number was studied 
numerically. Three test cases with different Reynolds 
numbers were studied using both coarse grids (96 x 61) 
and fine grids (192 x 122) to examine numerical ac- 
curacy of solutions. Flow conditions of the three test 
cases are given in Table 5. The first test case was cho- 
sen to be the same as case SO in Thareja et al.r5I and 
the experimental results[’] are available for comparison. 
Meanwhile, the accuracy of the numerical results was 
also examined by grid-refinement studies. 

Figure 9 shows the time histories of maximum sur- 
face pressure and its location measured by the angle 
from the horizontal position. The results shown in 
this paper are those obtained using the fine 192 x 122 
grids. Figure 10 shows the comparison of instanta- 
neous surface pressure and heating rates with experi- 
mental results. The surface pressure and heating rates 
were normalized by po and qo ( p o / p ,  = 83.5 and 
qo = 41.43Btu/ft2s). The inherent unsteadiness can 
be observed from the figures by examining the location 
and magnitude of maximum surface pressure. Com- 
pared with experimental results, the present numerical 
solutions overpredict the peak pressure and underpre- 
dict the peak heating rates. This discrepancy between 
experimental and numerical results could result from 
the real gas effects at high temperature and the possi- 
ble free-stream disturbances in the experiment. 

Figure 11 shows the instantaneous temperature con- 
tours of the flow field. We can observe that our numer- 
ical schemes have well resolved the transmitted shock, 
supersonic jet, shear layers and boundary layer. The 
separation of boundary layer on the upper cylinder is 
due to viscous interaction of a reflected shock with the 
boundary layer. The separation on the lower cylinder 
may result from the significantly spatial oscillation of 
surface pressure shown in Fig. 10. 

Various studies on different free-stream Mach num- 
bers have been done experimentally and numerically. 
The basic unsteady flow pattern is similar. The 
Reynolds number for those tests is high enough to re- 
sult in possible transition from laminar to turbulent 
states in the boundary layer. This might have a feed- 
hack to the unsteadiness of flow pattern and enhance 
the instability of the interference flow which has also 
been observed in Ref. [7]. In order to study the effect of 
Reynolds numbers on the unsteadiness the the present 
flow, the numerical simulations were conducted at the 
same free-stream Mach number with lower Reynolds 
numbers. The results are presented in the next two 
test cases. 

Medium Reynolds Number Flow 
Reynolds number of the second test case was 2.57 x 

10’. The free-stream Mach number and temperature 
were the same as those of the previous test case. The 
impinging shock was generated at the same location 
with the same strength and angle. A set of different 
grids was used with fewer points clustered near the 
boundary than the previous case because the bound- 
ary layer was thicker. The numerical accuracy of the 
results were tested by grid refinement study using both 
coarse (96 x 61) grids and fine (192 x 122) grids. .~ .~ 

High Reynolds Number Flow 
Reynolds number of the first test case was 2.57 x 

10’. The CFL number of 0.95 was used in the explicit 
calculations. The computational grids shown in Fig. 8 
are the same as those used in Ref. [7]. 

Figure 12 shows the time histories of maximumsur- 
face pressure and its location on the cylinder surface 
based on the results using the fine grid. Figure 13 
shows the distribution of surface pressure and heating 
rates. Since no experimental data were available for 
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comparison, we normalized the surface pressure and 
heating rates by the same factors as previous test case. 
In the present test case of lower Reynolds number, 
the oscillation of peak pressure was restrained within 
a rather small range, and the location of peak pres- 
sure did not slide along the cylinder surface as it did 
in the previous case. The interference flow is more sta- 
ble than the one with higher Reynolds number. This 
can be seen in Fig. 14, which shows the temperature 
contours. The contours are smoother than the previ- 
ous ones shown in Fig. 11. This may indicate that 
there are fewer disturbances in the flow field at lower 
Reynolds number. The reflected shock pattern is signif- 
icantly smeared, and no separation of boundary layer 
occurs on either sides of cylinder. Figure 13 indicates 
no spatial oscillation of pressure along the lower sur- 

',.-' 

In order to study the detailed structure of flow d i s  
turbances outside the hypersonic boundary layer, we 
conduct direct numerical simulation of freestream pla- 
nar acoustic waves interacting with the bow shock in 
front of a cylinder moving at hypersonic speeds. Fig. 18 
shows a schematic of the flow field. In the numer- 
ical simulation, the Euler equations were solved by 
the high-order EN0  schemes. The numerical solutions 
were compared with results of the onedimensional 
analysis by Morko~in[~] for the flow field downstream 
of the bow shock. The time history of the pres- 
sure fluctuations behind the bow shock was also com- 
pared with linear analytical prediction by McKenzie 
and Westphal[lgI. Meanwhile, grid refinement studies 
were carried out to ensure the numerical accuracy of 
the numerical solutions. 

faceof cylinder. The p&k heating raies are an order 
of magnitude lower than those of the previous case at 
a higher Reynolds number. The lower heating rates 
at a low Reynolds number are the results of a thicker 
boundary layer results in gradient in tempera- 

rates on the cylinder surface. 

Linear 
tream entropy wave has been 

analyzed by Morkovin[9. p" this paper, we consider 
the case of acoustic wave/shock interaction. we use 
the Same notations those of Ref, [g] in the linear analy- 

solutions for acoustic wave/shock interaction along the 

The case for a single 

ture across the boundary layer, thus, a small heating sis. Following the by Morkovin, the 

Low Reynolds Number Flow 
The Reynolds number of the third test case was 

2.57 x lo2.  Figures 15, 16 and 17 show the numerical 
results using the 192 x 122 fine grids. We can observe 
that the interference flow in this case is the most stable 
one among the three test cases. In Fig. 16, the super- 
sonic jet, shear layer as well as the jet bow shock are 
significantly smeared to a further extent than those in 
the second test case. The bow shock is much thicker 
than those of the previous two test cases because the 
Knudson number for the present case is about lo-', 
which is mucher higher than those of previous cases. 
The distribution of surface pressure and heating rates 
are quite smooth, and peak values are much lower than 
those of the previous test cases. This may he due to  
the fact that the reduction in the strength of the jet 
bow shock results in a less compression on the cylin- 
der surface and smaller peak values of surface pressure 
and heating rates. Moreover, a larger boundary layer 
thickness should also contribute to the reduction of the 
peak surface heating rates for the present case. 

Based on the observation of our numerical simula 
tions, the unsteadiness of high and low Reynolds num- 
bers for type IV interference heating depends strongly 
on the Reynolds numbers of the flow. In order to  gain 
more insight into the unsteady mechanism of the type 
IV interference flow, studies in the real gas effects and 
the effect of free-stream disturbances to the onset of 
instability of the flow are needed in the future. 

Shock-Disturbance Interaction for 
Hypersonic Flow over a Cylinder u 

stagnation line can be formulated approximately as a 
onedimensional problem shown in Fig. 19. In order to 
simplify the analysis, the bow shock is assumed to he 
a normal one. The mean flow properties between the 
shock and the body are assumed to he uniform. The 
disturbance pressure, density, and entropy are nondi- 
mensionalized by the local steady-state properties as 
f 0 11 ow s : 

where c is speed of sound, and C, is the specific heat 
at constant pressure. Disturbances from the mean flow 
of flow variables upstream and downstream of the bow 
shock are denoted by subscripts of minus and plus signs 
respectively. Upstream mean Eow properties are d i s  
tinguished from the downstream ones by subscript 1. 
The upstream disturbances are assumed to be a planar 
acoustic wave with a single frequency, Le., 

p- = Ap-e iw[t--l , 
u- - - A "_ e i w [ ' - m l  , 

E- = 3- (20) A eiw[*-+l 

then the disturbances behind the shock are the com- 
bination of down-stream propagating waves and up- 
stream propagating acoustic waves reflected from the 
solid surface: 

A eic+iw[*- *I + ~ , ; ~ i n + i ~ [ ' + e l  P+ = P+ 

u+ = A,+e ";e il+iu[t- + A  in+iw[t+*l 

E+ = ~ , + ~ i m + i w [ t -  5 7 1  (21) 
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where the second parts in p+ and u+ account for the 
up-stream moving acoustic wave which is reflected from 
the body. The ShaDe of the bow shock is Derturbed 

field behind the bow shock consists of downstream 
moving waves only until the acoustic waves reflected 
from the bodv reach the bow shock. Under such con- 

from its mean position as follows: dition, the analytical solution of pressure perturbation 
right behind the shock can be found in Ref. [19] as 

4 
*= -  iA+e*jz+iWt (22) 

p+ - p ~ M I  + 2(y + 1)MI3 + ( 3 ~  - ~ ) M I '  - Y + 1 

,An\ 
IP- I - P1 (y + 1)(1+ Ml2 + 2MM12) 

The unknown parameters j, I ,  m and n account for the 
Phases of downstream disturbances and shock disdace- 
ment. If disturbances are small, the downstream dis- 
turbances and the displacement of unsteady shock can 
be solved in terms of the given upstream disturbances 
using linearized Rankine-Huginiot's 

where the coefficients in the matrices are the functions 
of upstream Mach number only and their detailed for- 
mulations can be found in Ref. 191. From acoustic 
theory, the amplitudes of down-stream and upstream 
moving acoustic waves satisfy 

AP+ =A"+, Apt + = -Au, + . (24) 

The boundary condition on the body requires that the 
disturbance velocity u+ vanishes on the body leads to 

A:+=-A,+, l = n +  2wd + 2 N a .  (25) c( 1 - M2) 

\ L Y l  

Numerical Simulation 
Supersonic ideal-gas flow with free-stream acoustic 

disturbances over a circular cylinder was studied for 
test cases of several frequencies. Free-stream Mach 
number was set to 8.03. Radius of cylinder was 0.0381. 
Two sets of computational grids were used (100 x 80, 
200 x 160) with uniform grid spacing in radial and 
tangential directions. Calculations were carried out 
through following procedure. First, the second-order 
EN0 scheme was used to obtain a steady flow field. 
Once the steady flow was obtained, the forcing acous- 
tic waves were superimposed on the freestream bound- 
ary of the computational domain. For computation 
of unsteady flow field, the third-order EN0 scheme in 
space with second-order explicit Runge-Kutta method 
in time was used. 
Steady flow field 

Fieure 20 shows the results of mean Dressure and - 
density calculation along stagnation lines using both 
coarse and fine grids. Figure 21 shows the pressure 
contours of coarse grid computation. We can observe 
the shock is well captured. The third or higher-order 
EN0 schemes are not suitable for steady flow calcula- 

where N is an arbitrary integer. The unknowns S t ,  P t  
and can be from the system Of three 
equations (23). 

For the present case of an acoustic wave in the free 
stream, s- is zero. Solving E¶. (23) gives US the Pres 
sure perturbation 

tion since the numerical instability becomes significant 
in high-order shock capturing schemes. Even though 
using only second-order EN0 schemes, we did observe 
slight oscillations in the steady flow solutions. Thus, 
in order to understand the effect of this numerical in- - 

, [l+eS('-M ) I ,  stability on steady calculation, we calculated the mean d 
- p+ e-*4:+*l = n23 

?ird 

values of numerical solutions of the steady flow field 
computed by the second-order EN0 schemes. We then 
obtained the deviation of numerically solutions from 
their mean values by taking the root-mean-square in- 
tegration. This deviation can be seen as a numeri- 
cal disturbances in steady flow calculation. Figures 22 

A"_ PZ3e +-M'I - P f  23 

where 

p& = UZl + u31, p 2 3  = UZl - u31, 
O23 = nZl(A32 + A331 - u31(A22 + A23). (27) 

and 23 show the magnitudes of pressure and density 
deviations normalized the corresponding theore& 
ical mean stagnation properties. Figures 24 and 25 
show the distributions of pressure and density devia- 
tions along the stagnation line (0 = 0') and the max- 

From above relations, we can obtain the amplitudes of 
pressure and velocity perturbations downstream of the 
shock along the Stagnation line. It can be shown that 
the pressure perturbation on the body surface is 

imum disturbance plane (0 = 48.6'). We can observe 
that maximum deviations are mainly at the shoulder 
of the bow shock and the magnitudes are very small. 
The way to control this instability is to  use stronger 
numerical dissipation schemes (for instance, the TVD 
minmod limiter) to damp out the instability. However, 
since the levels of deviation in most part of the flow 

, 

(28) 
which always greater than those away from the body. 

On the other hand, the initial moment after impos- 
ing the disturbances in the free stream, the disturbance 

12%31 - -  P t ( 4  - 
2 I ' [P23' + P& - 2P23P&COS &] 
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field are small compared with the magnitude of distur- 
bances which we introduced for unsteady calculation, 
the results of second-order EN0 calculation for steady 
flow fields are acceptable for our unsteady simulation. 
Acoustic wave/shock interaction 

After steady flow field had been set up, we in- 
troduced acoustic disturbances at free-stream bound- 
ary. The free-stream acoustic disturbances were 6q = 
Aqe’’{z-(Y+c)‘), where q can be u,  v ,  p or p. The am- 
plitude of acoustic wave co was set to be one percent 
of freestream unperturbed properties as follows: 

d 

AU = C O U ~ ,  AV = 0, 
A P  = pmc,Au, Ap = ApP/cm2. (30) 

Three wave numbers ( k 1 2 5 ,  170,250 m-l)  were cho- 
sen in such manner that the computational grids could 
resolve the disturbance waves downstream the shock. 
The CFL number was approximately 0.8. All the 
unsteady computations were performed for 30 distur- 
bance periods. Calculations of root-mean-square flow 
quantities were carried out for the last 25 periods. 

Figure 26 shows the time history of disturbance pres- 
sure at the point behind the bow shock along the stag- 
nation line for the caw of wave number k 2 5 0 .  Two 
discrete zones can be seen in this figure. The first zone 
contains a down-stream moving acoustic waves (with 
the speed u + e) only. The second one consists of both 
down-stream moving and upstream moving (with the 
speed U-c) acoustic waves reflected from the wall. The 
straight lines in the first zone correspond to the max- 
imum and minimum values given by Eq. (29). Since 
no disturbances can transmit through the shock and 
propagate upstream, these acoustic waves are reflected 
back and forth in the region between the shock and the 
body. Because the reflection coefficient (MecKenzie et 
al.[”1) of acoustic waves incident behind the normal 
shock can not exceed unity, the resonance of acoustic 
waves is not likely to build up. Nevertheless, these 
acoustic disturbances will reach an equilibrium state 
after several disturbance periods as shown in Fig. 26. 

Figure 27 shows the results of root-mean-square d i c  
turbance pressure distribution along the stagnation line 
from both coarse and fine grid computations with wave 
number k=125. The results show that current grids are 
accurate enough to resolve the transient flow features. 
Figures 28 and 29 show the comparison of numerical 
solutions with analytical ones for flow at different free- 
stream frequencies. The solid lines correspond to the 
analytical values obtained from Eq. (28). The “wave- 
lengths” from numerical calculations are slightly larger 
than those from analytical solutions. Amplitudes of 
disturbances are also greater than those predicted by 
analysis. This may attribute to the simplified assump 
tion of uniform steady flow field behind the shock in 
the analytical analysis. In reality, the steady flow is 
not uniform downstream the shock. The difference in 

LJ’ 

wavelength can be easily verified as follows. If we take 
root-mean-square calculation with respect to time for 
Eq. (28), the ‘wavelength’ X should satisfy 

(31) 

Substitute w = k(ul +cl) for acoustic waves, we obtain 

(32) 

Since the mean flow velocity is decelerating toward the 
wall, the wavelength will become larger than that ob- 
tained from uniform flow assumption. This will also 
affect the amplitudes of disturbances, as can be verified 
from inspecting the one-dimensional momentum equa- 
tion. The net effect is the additional amplification of 
disturbance properties in the numerical solutions near 
the wall as shown in these figures. 

Figure 30 shows the contours of root-mean-square 
disturbance pressure, density and vorticity with 
k=250. The results show maximum disturbance pres- 
sure at the stagnation point. Amplitudes of distur- 
bances drop an order of magnitude as these distur- 
bances propagate away from the stagnation line. Other 
numerical results using different free-stream Mach 
number show the similar trend. Figure 30(c) shows 
that the maximum disturbance vorticity is generated 
near the shoulder of the curved bow shock. This indi- 
cates that most of the vorticity waves generated down- 
stream of the shock due to  the upstream shock/acoustic 
wave interaction are away from the body. 

Figure 31 shows the contours of instantaneous dis- 
turbance pressure, density and vorticity. The amplified 
acoustic wave pattern can he observed in Fig. 31(a). 
Since the disturbance density field is composed of both 
acoustic and entropy waves, the flow pattern is not so 
clear as that shown in Fig. 31(a). However, two zones 
downstream of the shock can be roughly seen. The 
first zone, which is near the shock, is composed of both 
acoustic and entropy waves. The second one, which is 
near the body, is mainly composed of acoustic waves. 
The entropy waves seem to be smeared near the body. 
The unsteady flow pattern and enlarged flow distur- 
bances near the stagnation region might have substan- 
tial influence on boundary layer transition. Therefore, 
the numerical results of present work will be valuable in 
the understanding the effect of shock/disturbances in- 
teraction on hypersonic boundary layer transition. The 
results of the present test case also show that the uni- 
form acoustic waves become very nonuniform in magni- 
tude after the interaction with the bow shock and with 
the reflected waves from the cylinder. This demon- 
strates importance of including the bow shock wave as 
part the flow field in the direct numerical simulation of 
receptivity of hypersonic boundary layer. 
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Conclusions [4] Klopher, G. H. and Yee, H. C., Viscous hyper- 
sonic shock-on-shock interaction on blunt cowl 
lips, AIAA Paper 88-0233. The high-order accurate EN0 schemes have been 

applied to two-dimensional compressible Euler and 
Navier-Stokes equations for studying transient hyper- 
sonic viscous flows. The accuracy of the EN0 schemes 
has been tested by the grid refinement studies on the 
linear convection-diffusion equation. Numerical results 
of Stokes oscillating plate indicate that the high-order 
EN0 schemes have good ability to calculate the un- 
steady fluid flows with solid boundaries. 

The type IV shock interference heating problem has 
been studied by applying high-order EN0 schemes to 
hypersonic viscous flows at different Reynolds num- 
bers. The inherent unsteadiness of the flow has been 
captured by third-order accurate EN0 schemes for the 
Navier-Stokes equations. Numerical results show that 
the Reynolds number has a strong effect on the insta- 
bility of the interference flow. The flow becomes more 
and more stable when the Reynolds numbers decrease. 

The interaction of small free-stream disturbances 
with bow shock wave in front of a cylinder has been 
studied through different disturbance frequencies. In- 
tense amplification of disturbances downstream of the 
shock was found in both analytical and numerical stud- 
ies. Numerical results show reasonable agreement with 
a simplified analytical solution. The acoustic waves 
become very nonuniform in magnitude near the cylin- 
der, which shows the importance of including the bow 
shock wave as part the flow field in the direct numerical 
simulation of receptivity of hypersonic boundary layer. 

d' 
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Table 1: Solution errors of EN0 schemes applied to convection-diffusion equation 
L1 Error ( rc)  

grid 1 3rd order EN0 I 4th order EN0 I 5th order EN0 I 6th order EN0 
20 1 5.724xlO-' ~ 3 . 0 0 4 ~ 1 0 - ~  1 1 . 6 3 6 ~ 1 0 - ~  Il.O61xlO-' 

Prandtl number 

320 

0.72 

160 
320 
640 

Specific heat ratio 
wall temperature (K) 

Free-stream temperature (K) 
Gas constant (Nm/kgK) 

Cvlinder radius (rn) 

1 . 0 9 4 ~ 1 0 - ~  (2.39) 
1 . 3 9 5 ~ 1 0 - ~  (2.97) 
1.708 x (3.03) 
2 . 1 2 4 ~ 1 0 - ~  (3.01) 
2 . 6 4 8 ~ 1 0 - ~  (3.00) 

1.4 
294.44 
111.56 
286.92 
n.0381 

3 . 0 7 8 ~ 1 0 - ~  (3.29) 6 . 8 4 2 ~ 1 0 - ~  (4.58) 2 . 1 6 8 ~ 1 0 - ~  (5.61) 
1 . 7 5 3 ~ 1 0 - ~  (4.13) 2 . 0 9 7 ~ 1 0 - ~  (5.03) 2 . 9 3 7 ~ 1 0 - ~  (6.21) 
9 . 5 8 6 ~ 1 0 - ~  (4.19) 6 . 4 9 4 ~ 1 0 - ~  (5.01) 4 . 4 4 0 ~ 1 0 - ~  (6.05) 
5 . 8 3 8 ~ 1 0 - ~  (4.04) 2 . 0 1 0 ~ 1 0 - ~  (5.01) 6.783xlO-'O (6.03) L 3.610x10-* (4.02) 6 .244~10- '~  (5.01) 1 .052~10- '~  (6.01) 

2: Solution errors of modified EN0 schemes applied to convection-diffusion equation 
L1 Error (rc)  

3rd order EN0 I 4th order EN0 I 5th order EN0 
5 . 0 3 1 ~ 1 0 - ~  I 2 . 5 9 0 ~ 1 0 - ~  I 1 . 5 4 1 ~ 1 0 - ~  
8 . 7 3 8 ~ 1 0 - ~  (2.53) 2 . 3 3 9 ~ 1 0 - ~  (3.47) 6 . 8 8 6 ~ 1 0 - ~  (4.48) 
1 . 2 2 9 ~ 1 0 - ~  (2.83) 1 . 3 3 3 ~ 1 0 - ~  (4.13) 2 . l O 2 ~ l O - ~  (5.03) 
1 . 5 7 0 ~ 1 0 - ~  (2.97) 8 . 0 2 7 ~ 1 0 - ~  (4.05) 6 . 4 9 3 ~ 1 0 - ~  (5.02) 
1 . 9 7 0 ~ 1 0 - ~  (2.99) 4.951x10-' (4.02) 2 . 0 1 0 ~ 1 0 - ~  (5.01) i 2 . 4 6 5 ~ 1 0 - ~  (3.00) 3 . 0 7 6 ~ 1 0 - ~  (4.01) 6 .244~10- '~ (5.01) 

\ /  Table 3: Solution errors of modified fourth-order EN0 

d 

scheme i 

160 
320 
640 

mode rn = 2 

6th order EN0 
1 . 0 6 1 ~ 1 0 - ~  
2 . 1 6 9 ~ 1 0 - ~  (5.61) 
2 . 9 3 7 ~ 1 0 - ~  (6.21) 
4 . 4 4 0 ~ 1 0 - ~  (6.05) 
6.783x10-" (6.03) 
1.052x10-" (6.01) 

Table 4: Solution errors of modified 
third-order EN0 scheme for Stokes 

Table 5: Flow conditions for type IV interference heating 
Test case I 1 I 2 I 3 

Reynolds number I 2.57354 x lo5 I 2.57354 x lo3 I 2.57354 x lo2 
Free-stream Dressure (N/rn21 I 985.015 I 9.85015 I 0.985015 

. ...~ \ ~ ~ - ,  ~"~ ~~~~ ~~ ~~~~~~ 

Flow deflection angle (deg.) I 12.5 
Impinging shock location (m) I (-0.00889,-0.013276) 
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Fig. 1: Grid refinement study for convection-diffusion 
equation with u(z ,  0) = sin4 z. 
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Fig. 2: 
equation with u(z, 0) = sin4 2. 

Numerical solutions of convection-diffusion 
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Fig. 3: Numerical solutions of convection-diffusion 
equation with u(z,O) = e 0 . 5 2 ~ i n ~ z .  
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Fig. 4: 
equation with u(z,O) = e0.5"sin3xz. 

Numerical solutions of convection-diffusion 
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Fig. 5: Instantaneous solutions of Stokes oscillating 
plate at various cycles 
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Fig. 6: Grid refinement study for Stokes oscillating 
plate at t = 0.5 cycle. 
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fl \-- 
Bow Shock\ 

Fig. 7: Schematic of type IV shock interference flow. 

Fig. 8: Computational grids for type IV shock interfer- 
ence flow (192 x 122). 
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Fig. 9: Time history of magnitude and location of m a -  
imum surface pressure for type IV interference heating, 
Re = 2.57 x 10'. 
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Fig. 10: Distribution of surface pressure and heating 
rate, Re = 2.57 x lo5. 
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Fig. 11: Temperature contours of type IV interference 
heating, Re = 2.57 x lo5,  fine grids (192 x 122). 
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Fig. 12: Time history of magnitude and location of 
maximum surface pressure for type IV interference 
heating, Re = 2.57 x lo3. '4 
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Fig. 13: Distribution of surface pressure and heating 
rate, Re = 2.57 x lo3. 

Fig. 14: Temperature contours of type IV interference 
heating, Re = 2.57 x lo3, fine grids (192 x 122). 
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Fig. 15: Time history of magnitude and location of 
maximum surface pressure for type IV interference 
heating, Re = 2.57 x 10'. 

Fig. 17: Distribution of surface pressure and heating 
rate, Re = 2.57 x 10'. 

Fig. 16: Temperature contours of type IV interference 
heating, Re = 2.57 x lo2,  fine grids (192 x 122). 

Bow Shock \ 
Fig. 18: Schematic of shock/disturbance interaction for 
hypersonic flow over a cylinder. 
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Fig. 19: On+dimensional assumption by Morkovin['] 
for shock/disturbance interaction. 
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Fig. 20: 
along the stagnation line, iM = 8.03. 

Distribut,ion of mean pressiirc and densiiy 

Fig. 22: Contours of prcssure deviation from mean flow 
calculation, second-order ENO. 

Fig. 21: Pressure contours of mcan flow calculation, 
11.1 = 8.03, coarse grid (100 x 80). 

Fig. 23: Contours of density deviation from mean flow 
calculation, second-order ENO. 
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Fig. 24: Pressure deviation along B = 48.6' and B = 0' 
lines. 
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Fig. 25: Density deviation along 0 = 48.6' and 0 = 0' 
lines. 
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Fig. 26: Time history of instantaneous pressure behind 
the shock, M = 8.03, k = 250 m-l. 
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Fig. 27: Grid refinement study for root-mean-sqaure 
disturbance pressure calculation, k = 125 m-'. 
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Fig. 28: Distribution of root-mean-sqaure disturbance 
pressure along the stagnation line, k = 125 m-l. 
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Fig. 29: Distribution of root-mean-sqaure disturbance 
pressure along the stagnation line, k = 250 mu'. 
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Fig. 30: Contours of root-mean-sqaure disturbance (a) pressure, (b) density, and ( c )  vorticity, k = 250 m-’ 

Fig. 31: Contours of instantaneous disturbance (a) pressure, (b) density, and (c) vorlicily, k = 250 m-’ 
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