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Abstract 

The  complexity of hypersonic flow requires efficient 
and  accurate numerical methods for flow-field predic- 
tion. Since the  current numerical methods for hyper- 
sonic flow computations are usually only second or- 
der accurate, we apply the essentially nonoscillatory 
(ENO) schemes, which are uniformly high order accu- 
rate to two-dimensional compressible viscous flow, with 
solid boundaries using body-fitted structured grids. 
Implicit methods are used to solved the Navier-Stokes 
equations by using the  E N 0  schemes for the test cases 
of steady high-Reynolds-number viscous flows, which 
include supersonic boundary layer, shock/boundary- 
layer interaction flow, and type IV hypersonic shock- 
wave interfcnce heating problem. Results of the third 
order accurate E N 0  scheme for solving the Navier- 
Stokes equations have been obtained for the test cases. 
These results show tha t  the  2-D EN0 schemes are able 
t o  compute viscous flows with high resolution. 

4 I. Introduction 

T h e  complexity of hypersonic flow requires efficient 
and accurate numerical methods for flow-field predic- 
tion. In numerical computations for viscous hypersonic 
flow, the presence of discontinuity surfaces of flow vari- 
ables, such as shock waves, contact surfaces, and com- 
bustion fronts, makes it difficult to obtain high order 
accurate numerical solutions. An example of these flow 
problems is the shock-wave interference heating prob- 
lem. It  is a critical problem in the  development of 
future hypersonic vehicles because the most intense lo- 
cal heating rates on the vehicle are expected to be on 
cowl lips caused by this shock-shock heating[']. There- 
fore we need to accurately and efficiently predict these 
flow characteristics. But the  shock-shock interference 
problem is a difficult problem for numerical computa- 
tion because the strong shock waves and shear layers 
occur and interact with one and the other to form com- 
plicated flow patterns. High order accurate shock cap- 
turing numerical schemes are necessary to compute the 
flow structure. 
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In the neighborhood of the disco,ltinuity surfaces 
of the flow variables, conventional methods based on 
central difference approximation yield oscillatory solu- 
tions. Upwind difference schemes have been developed 
to capture the  shock waves and other discontinuity sur- 
faces without oscillation. However, a straight forward 
extension of the  first order upwind schemes to higher 
order accuracy leads to oscillatory solutions around the  
shock waves. The  need of high resolution nonoscilla- 
tory numerical solutions has led t o  the  development 
of total variation diminishing (TVD) schemes[*], which 
have been successfully used to compute practical flow 
problems using the Euler and Navier-Stokes equations. 
In order to prevent the total variation of the solutions 
from increasing, however, the  TVD schemes are not. 
uniformly higher order accurate. I t  is necessary for 
these schemes to reduce to first order accurate at local 
extrema of the solutions while maintain second order 
accuracy in other smooth regions. 

In recent years, a class of essentially nonoscilla- 
tory (ENO) schemes, which are able to achieve u n -  
formly high order accuracy, has been introduced by 
Harten, Engquest, Osher and Chakravarthy["I. The  
E N 0  schemes present a hierarchy of uniformly high 
order accurate schemes which are generation of Go- 
dunov's scheme, its second order accurate MUSCL 

to arbitrary order of accuracy. T h e  E N 0  
schemes attempt t o  avoid the  growth of spurious oscil- 
lation in numerical solutions by piecewise polynomial 
interpolations based on adapt,ive stencil, which is cha- 
sen according to the local smoothness of the flow vari- 
ables to avoid interpolation across discontinuities. 

Because of uniformly high order accuracy of thc  E N 0  
schemes, they are particularly appropriate for flow 
computations where uniformly high order accuracy are 
needed to compute flow with discontinuity fronts. One 
example of these flows is the hypersonic shock-wave 
interference heating problem. more over, they are 
also suitable t o  compute unsteady high-frequency flow 
physics. An example of their applications is the  sim- 
ulation of shock-wave turbulence interaction in a flow 
field with complicated geometries, which are not easily 
solved by the spectral methods. 

Since their introduction, the E N 0  schemes have been 
applied successfully to solve many 1-D and 2-D Euler 



- 
Equations and Navier-Stokes equations. Recent ap- 
plications can be found in Refs. [5, 6, 7, 8, 91. For 
the 2-D Euler equations, Casper extended the E N 0  
schemes based on the  finite volume approach to gen- 
eral 2-D curvilinear grids and has applied the E N 0  
schemes to 2-D boundary value problems for the Eu- 
ler equations. He obtained some promising results for 
two dimensional Euler equations with non-trivial ge- 
ometries and solid wall by using the  2-D E N 0  schemes 
of up to 4th order accuracy. 

However, the  EN0 schemes have not been applied to 
multidimensional compressible viscous flows with non 
trivial geometries and solid wall, which are of practi- 
cal importance in aerospace applications, and the per- 
formance of the  EN0 schemes in the viscous bound- 
a ry  layer is still unknown. Therefore, the  objective of 
this paper is to apply the  high order E N 0  schemes to 
high-Reynoldsnumber viscous flows by using curvilin- 
ear grids and t o  evaluate the  performance of the  E N 0  
schemes for these viscous flow computations. 

In this paper, the  E N 0  schemes are applied to the 
following test cases of viscous flows: 

W 

Supersonic flow of Mach 2 over a boundary layer 
of flat plate. This case, which does not involve 
a shock wave in the boundary layer, is chosen t o  
lest  the  performance of the 2-D E N 0  schemes on 
smooth viscous flow fields. 

Shock/boundary-layer interaction problem. An 
external oblique shock incident upon a boundary 
layer on a flat plate is chosen to be strong enough 
to cause the boundary layer to separate from the 
surface and reattach downstream. 

u 

Shock-wave interference heating on a 2-D cylindri. 
cal leading edge. 

The  results of viscous flow computations using the  2- 
D EN0 schemes of different orders of accuracy are eval- 
uated, especially the third order accurate E N 0  scheme, 
which is one order more accutate than most of the cur- 
rent methods. T h e  results of the present computations 
are also compared with available experimental results 
and  numerical results by using other numerical meth- 
ods. 

where U = b, pu, p v ,  e l T ,  F = F, + Fv, and G = 
G, + Gv. F, and G ,  are the inviscid flux terms and  F,, 
and G, are the viscous flux terms, i.e., 

and 

0 

(3) 

(4) 

In the equations above, e denotes the total energy per 
unit volume ( e  = CuT+(u2+v2)/2); the  gas is assumed 
t o  be  perfect gas with y = 1.4. Using tensor notation 
the  viscous stress and heat flux are given by 

aT 
azi 

Pi  = - K  - 

where p and K are computed by using the Sutherland's 
law and a constant Prandtl number assumption ( P r  = 
0.72). 

The  Cartesian coordinat.es are used to demonstrate 
the  numerical methods used in the present paper. 
In the finite volume approach, the integral form of 
the governing equations is used. For the  grid cell 
( i , j ) ,  which represents a rectangle ( z i - + , z i + i )  x 
(y , -+ ,y j++) ,  the intergal form of the conservation 
equations can be obtained by integrating Eq. (1 )  with 
respect to z and y over the cell, 

Gi,j+i - Gi, j - i ]  = 0 (7) 
- 

where Aij = Az, x Ayj is the area of the  cell and g,j 
is the cell average of U ,  

Navier-Stokes Equations p,++,j and (?i, j++ are the  cell surface integrals of the 
fluxes given by 

In the  Cartesian coordinates, the  twadimensioual 
Navier-Stokes equations can be written in the following 
conservation-law form: y,- + pi++,j = JYJ+' F(z ,+ : ,y , t )dy  (9) 

au a F  ac 
at ax ay -+--+-=(I 

d 
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Numerical methods in solving Eq. (7)  involve two 
procedures: formulating the numerical approximation 
of surface flux integrals and then using a time stepping 
scheme t o  solve Eq. (7),  which reduces to a system of 
ordinary differential equations. 

Surface Flux Integrals Approximation 
d 

The  first step is t o  formulate the  numerical approx- 
imation for surface flux integrals Fiti,j and Gi, j+i  
based on the  cell average values z ? ; j .  For tt+,j, the 
surface integrals in Eq. (9) are numerically evaluated 
by using the  Gaussian quadrature. For the  first and 
second order accurate schemes, one point Gaussian 
quadrature is used; for second and  third order accu- 
ra te  schemes, two-point Gaussian quadrature is used, 
etc. In order to compute the  Gaussian quadrature, we 
need to evaluate the  flux term F = F, + Fu at Gaus- 
sian quadrature points, where the  viscous and the Euler 
flux terms are  computed by using differently methods. 
F, is evaluated by using central difference approxima- 
tion, while F, is evaluated by using a upwind difference 
scheme in order t o  capture shock waves without oscil- 
lation. 

In the  finite volume formulation, however, - only the 
cell-averaged values of flow variables r / , j  are obtained 
i n  solving the  conservations. Therefore, the first step in 
evaluating the  inviscid fluxes is to reconstruct from g,j 
the  point values of flow variables, UL and U R ,  on the 
left and right sides of the cell interface Sit+. The  EN0 
schemes use adaptive piecewise polynomial interpola- 
tion to reconstruct the  point values of variables U L  and 
U,J. Since a fixed stencil high-order polynomial inter- 
polation leads t o  oscillatory interpolation across dis- 
continuity of the variables, the E N 0  schemes choose 
the  “smoothest” interpolation stencils to reconstruct 
thc  point value of flow variables, thus avoid interpola- 
tion across discontinuities so tha t  essential nonoscilla- 
tory schemes can he achieved with uniforrnly high order 
accuracy. 

Following the  reconstruction step,  the flux Fe is 
computed by using an  upwind approximation formula 
based on the  approximate values of U ,  and U R ,  There 
are many available unwind schemes to compute invis- 
cid flux. The  present studies use the Roe approximate 
Riemann solverI’’l as follows: 

- - 
- 

- - 

1 
2 
1 
- IAl (UR - UL) 2 

Fe(zi+i> Y > t )  = - [ F ( u L )  + F(UR)I - 
(11) 

where IAl, which is evaluated based on the Roe aver- 
age of flow variables UL and U R ,  is derived from the 
diagonalized form of the  Jacobian matrix of F, with 
all the  eigenvalues replaced by their corresponding ab- 
solute values. It, has been shown tha t  the Roe scheme 

’v 

show may violate the entropy condition when the  mag- 
nitude of an eigenvalue of matrix IAl is very small and 
may create nonphysical expansion shock in the solu- 
tion. Following Harten121, the  eigenvalue of \AI is mod- 
ified to be 

where is chosen to be 

f = qu,  + c )  (13)  

where u, is the normal velocity on cell interface and  c is 
the speed of sound. In the computations of the cases in 
this paper, only the  case of shock-on-shock int.erference 
heating problem needs modification with 7 = 0.2. 

Implicit Time-Stepping Scheme 

After the approximate formulation of the  flux inter- 
gals has been obtained, Eq. (7)  reduces to a system of 
ordinary differential equations, which can be  solved by 
using a t ime stepping scheme. For unsteady flow coni- 
putations, we use explicit t ime accurate methods in the 
E N 0  schemes to compute the flow problems. In this 
paper, Eq. ( 7 )  is integrated by using the  T V D  Runge- 
Kut ta  t ime stepping schemes of Shu - and Osher[”] to 
obtain the sell averaged variables r / ; j  at the next t ime 
step. 

On the other hand, for high-Reynolds-number vis- 
cous flow simulation, the  grid size across the bound- 
ary layer near body surfaces is so small that  explicit, 
methods use prohibitively long computer t ime to reach 
steady s ta te  solutions because the t ime step h a s  to be 
very small to satisfy stability conditions. Therefore, 
Eq. (7) is integrated by the  implicit line Gauss-Seidel 
relaxation methods described by MacCormack[121 so 
tha t  large CFL number can be used to rearch fast con- 
vergence for steady st,ate problems. T h e  method has 
been shown to be very robust and has been applied t o  
3-D computations and other hypersonic flow computa- 
tions. We use the implicit equations in the delta form 
so that in the implicit part of the equations we can 
use the Steger-Warming flux splitting method,  which 
is fast convergence for implicit methods, without hav- 
ing effects on the accuracy of steady s ta te  solutions. 

For steady s ta te  problems, whether the  EKO 
schemes are able t o  obtain steady s ta te  solutions have 
been questioned because the  residual of the computa- 
tions using the E N 0  schemes approaches a finite values 
instead of machine zero. The  finhe residual is caused by 
the unsteady adaptive interpolation procedure used in 
the E N 0  schemes. Nevertheless, our computational re- 
sults show tha t  the numerical computations can be  con- 
sidered to reach steady s ta te  solutions aftcr the  residual 
reaches a fixed pattern as time step increases. 

1-D E N 0  R.econstruction 
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The  E N 0  schemes have been documented exten- 
sively in the  literature13’ ?. The  E N 0  interpolation 
used in this paper is briefly review below, more de- 
tails can be found in the  references cited above. The  
E N 0  reconstruction for a scalar function is considered 
herein, the extension t o  the  Euler equations which is a 
system of equations is straight forward[31. 

We want to evaluate the  point value of ~ ( z )  of a 
piecewise smooth function w from its cell average E;, 

where hi 3 zit$ - zi- 1. Given the  cell average E;, we 
can immediately obta ig  the  point value of the primitive 
function W ( z )  (= s,”,,, w(<)d()  as 

i 

Since 

(16) 
d 

dr w(x)  E -W(z )  , 

we obtain a piecewise polynomial interpolation func- 
tion H,,,(x; W )  of degree m by interpolating the point 
values of W<++ given by Eq. (15), and then obtain a 
poiiitwise approximation to w ( r )  by 

(17)  
d 
dx R ( x ; E )  = -H,(z; W )  

where R(x;  E )  denotes the  reconstruction polynomial. 
For cell [ x i - b , z i - : ] ,  we take Hm(r; W )  to be the 

mth-degree polynomial t ha t  interpolates the values of 
Wi+, at m + 1 successive points zj++, j, 5 j 5 
j, 4 m which include x , - +  and z;++. Since there 
are m different choices of j,, the interpolation sten- 
cil is not unique. T h e  E N 0  schemes choose a stencil 
for [ t , - : , z ; - + ]  such tha t  H,(z; W )  is “smoothest”, 
which is extracted from a table of divided differences 
of W ( x ) .  After an int,erpolation stencil has been chosen 
for every cell, the same divided difference table is used 
t o  compute the point value of w by using the Newton’s 
divided difference formula for polynomial interpolation. 

The  use of adaptive interpolation stencils is the  main 
contribution of the E N 0  schemes for high resolution 
computation across discontinuity surfaces. However, 
in smooth regions of the flow filed, the  chattering sten- 
cils used in the  E N 0  schemes can lead to a loss of 
accuracy[13]. S ~ U [ ’ ~ ]  has demonstrated tha t  this loss 
of accuracy can be avoided by biasing the selection of 
the stencils in the smooth part  of the solutions. Shu’s 
modified E N 0  schemes are also tested and used in this 
paper. 

Arbitrary Accuracy 2-D EN0 Reconstruction 

u 

‘V 

The  extension of the 1-D E N 0  reconstruction p r o  
cedure to the arbitrary accurate 2-D E N 0  reconstruc- 
tion via primitive function is documented by Casperr’]. 
T h e  implementation of 2-D E N 0  reconstruction is a 
composition of two applications of one-dimensional re- 
constructions in both x and y direction. T h e  two- 
dimensional cell average %,, is 

T h e  equation above can be written as 

where 

where the new piecewise smooth function i5j(x) is the 
line average in y in the  interval of [yj-+,yj++jl of 
w ( r , y )  for a given 2. 

According Eqs. (19) and (20), we can reconstruct 
the  2-D point value of w ( r , y )  from cell averages i n  
two steps. First, for each j ,  Eq. (20) shows that, z;j 
is the line average in z direction of one-dimensional 
function ijjj(r) in the  cell [r ,-+,j ,z,-+,j] ,  Therefore, 
the one-dimensional E N 0  interpolation procedure de- 
scribed previously can be used in E direction t,o ob- 
tained the point wise value of E j ( x ) .  Then,  for a given 
r ,  Eq. (20) shows that, E j ( x )  is t.he line average in 
y direction of one-dimensional function m(r, y). Sim- 
ilar one-dimensional E N 0  interpolation procedure is 
used in y direcrion to obtained the point wise value of 
w(z ,y )  by adaptively interpolate the point wise values 
of ijjj(z), which have been obtained in the  first step.  
Arbitrary order of accuracy can be  achieved by using 
this full two-dimensional E N 0  interpolation procedure. 

It is noted tha t  the procedure above is not the  ex- 
tension to two-dimensions by simply “overlapping” two 
one-dimensional stencils in each direction. CasperI7I 
has shown tha t  this “Dimension by Dimension” 2-D 
E N 0  schemes can only achieve second order accuracy. 
Since the main motivation of using the E N 0  schemes in 
this paper is t o  perform high order accurate computa- 
tions, we use the arbitrary high order two-dimensional 
E N 0  reconstruction. The  arbitrary accuracy 2-D E N 0  
reconstruction procedure of this paper is programmed 
in a way such tha t  reconstruction procedure is about 
two times as expensive as the “dimension by dirnen- 
sion” reconstruction and requires about t.wo times as 
much memory. 
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General Curvilinear Coordinates 

The 2-D E N 0  schemes for solving the Navier-Stokes 
equations in this peper are based on structured body- 
fitted grids. T h e  use of the  structured grids makes 
the arbitrary order two-dimensional E N 0  reconstruc- 
tion more efficient compared with unstructured grids. 
I t  is noted tha t  t h e  E N 0  schemes for the Euler e q u a  
tions have been extended to twu- and  three- dimen- 
sional geometries by using unstructured grid& I6l. 

Though the  structured grids are not as flexible, most 
of the viscous flow problems can be represented by the  
structure grids. 

In the  general curvilinear coordinates in the  body- 
fitted grids, the  conservation equations in Cartesian 
coordinates are transformed in the  curvilinear coordi- 
nates ((, rj) in conservation-law form. The  E N 0  con- 
struction procedures are extended t o  ((, 7) space simi- 
lar to the  procedures in the  Cartesian coordinates de- 
scribed above. T h e  details can be found in Ref. 171. 

Boundary Conditions 

- 

No slip boundary condition is used on the the wall 
surface. T h e  flow variables i n  the supersonic free 
stream are specified, and those in the outflow bound- 
aries a re  computed by using zeroth order or linear ex- 
trapolation. For high order E N 0  interpolation, the 
adaptive interpolations stencil is chosen such tha t  only 
interior flow variables are involved in  the interpola- 
tions. 

L-‘ Viscous Flux Computation 

For the  Navier-Stokes equations, the evaluation of 
intergals of viscous flux on the  cell interfaces requires 
the first order derivatives of velocity and temperature. 
These derivatives are evaluated by using the  central dif- 
ference approximat,ions based on the  point wise value of 
the flow variables at the centroid of the cell, which can 
be reconstructed by using the  E N 0  reconstruction. At 
present stage of this research, these values for viscous 
computations are taken to be the cell averaged value 
which are second order accurate. On the  other hand 
the inviscid fluxes are evaluated at arbitrary accuracy. 
Our next step is t o  modify the viscous schemes so tha t  
the scheme is arbitrary high order accurate for both 
inviscid and  viscous flux computations. 

111. Numerical Results 

T h e  performance of the 2-D E N 0  schemes in solving 
the  two-dimensional Navier-Stokes equations is tested 
by computing three test c a e s  discussed in the intro- 
duction section. The  test cases are computed by us- 
ing five different, tcst runs of the E N 0  (or modified 
ENO) schemes with spat.ia1 accuracy ranging from first 
to third order accurate as follows: 

e’ 
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1. First order E N 0  scheme, which reduces to the  first 
order Roe scheme. 

2. Second order E N 0  scheme. 

3.  Second order Shu’s modified E N 0  scheme 

4. Third order EN0 scheme. 

5. Third order Shu’s modified E N 0  scheme 

The  results of these test runs are compared with one 
and the other t o  evaluate t,he effect of increasing order 
of accuracy in the  E N 0  schemes. 

Supersonic Boundary Layer 

T h e  first test case, which does not  involve a shock 
wave in the flow field and is chosen t o  test the  per- 
formance of the 2-D E N 0  schemes on smooth vis- 
cous flow fields, is supersonic laminar flow over a flat 
plate. T h e  free stream flow conditions are: M, = 2.0, 
Re,/L = 1.65 x 106/m, T, = Two,, = 223.631’ and 
L = 1.83m. The  results of the  two-dimensional E N 0  
schemes for the Navier-Stokes equations a re  compared 
with the results of boundary layer computations which 
are taken from Ref. 1171. 

A set of coarse 20 x 20 grids (above the  plate surface) 
which are uniformly spaced in both I and y directions, 
is used t o  compute the boundary-layer flow. T h e  veloc- 
ity and temperature profiles across the  boundary layer 
at z = 0.915m are plotted to compare with the results 
obtained from the boundary layer code. 

Figs. 1 to 2 show the velocity profiles across the  su- 
personic boundary layer at I = 0.915m comput,ed by 
the five test runs. Fig. 3 shows the  corresponding t e n -  
perature profiles. In general, these results show that, 
as the order of accuracy of the E N 0  schemes increases, 
the accuracy of both the velocity and  temperat.ure pro- 
files improves. The  results of using Shu’s modified 
E N 0  schemes shows improvement of accuracy com- 
pared with the corresponding EN0  schemes without. 
modification. On the other hand, the  computations us- 
ing the modified E N 0  schemes show more fluctuation 
in the convergence process compared with the  E N 0  
schemes. 

The  results of the  first test case show tha t  the  E N 0  
schemes are able to predict steady viscous flows in the 
boundary layer with high accuracy. T h e  Shu’s modi- 
fied E N 0  schemes improve the accuracy of the  E N 0  
schemes in the boundary layer, bu t  tend to be slightly 
more oscillatory. Overall, Shu’s modified EN0  schcmrs 
are preferred over the unmodified E N 0  schemes for vis- 
cous flow computations. 

Shock-Wave/Boundary Layer Interaction 

This test case, which is intended t o  evaluate the 
performance of the E N 0  schemes i n  viscous boundary 



layer with steep gradients of the flow variables presense 
in the flow field, is the interaction of an  oblique shock 
wave with a laminar boundary layer. Fig. 4, which is 
taken from [18], shows the  flow field representing this 
interaction. The  external oblique shock incident upon 
a boundary layer on a flat plate is chosen t o  be  strong 
enough to cause the  boundary layer t o  separate from 
the surface and  reattach downstream. 

The  same problem has been studied experimentally 
by Hakkinen e t .  aI.[”l at the  following free stream flow 
conditions: Mm = 2.0, Re, = 2.96 x lo5,  and the 
incident shock wave is imposed such tha t  i ts  direction 
intersects the  flat plate at 32.6 degrees. The  Reynolds 
number is based on the  reference length measured from 
the  leading edge to the  intersection point. The  same 
problem has been studied extensively by many authors 
using various numerical methods[1sb ’‘I. 

In the  present studies, the  five test runs are used 
t o  computed the  flow field of shock/boundary-layer in- 
teraction using different grid resolutions. Only the  re- 
sults of the first order, the  second and third order EN0 
schemes with Shu’s modification are shown in this pa- 
per due t o  space limitation. The  results presented here 
are computational results using a 102 x 144 grids above 
the plate surface. A set of uniformly spaced grids 
is used in z direction and an exponentially stretched 
grids are used in y direction. T h e  implicit E N 0  scheme 
with Roe scheme without entropy correction are uscd 
in the computations. T h e  C F D  number for typical run 
is 5 x lo5 .  Each run takes about 200 iteration until the 
solution converge to a fix pattern. For the grids in the 
present case, the first order implicit computation takes 
about  0.6 minute per t ime step in an IBM RISC600 
workstation, while the second order E N 0  scheme takes 
about  a factor 2 and  the  third order E N 0  scheme takes 
about  a factor 3.5 C P U  time per step.  

Figs. 5 shows skin friction coefficient defined by 
c, = r / (pwu&/2) .  T h e  numerical results are com- 
pared with experimental results of Hakkinen a t .  al.[”] 
and the  numerical results of MacCormack[”l. The  re- 
sults show the improvement of accuracy as the order 
of the  EN0 schemes increases. The  numerical results 
of the  second and third EN0 schemes are consistent 
with MacCormack’s results which were computed with 
a coarse 32 x 32 grids and o thr r  numerical computa- 
tions. These figures also show tha t  the  numerical re- 
sults of the skin friction distribution obtained by high 
order EN0 schemes are not very smooth in the sepa- 
ration region because the separation of the boundary 
layer and  the modified E N 0  reconstruction is used. 

Figs. 6 to 8 show the pressure contours of three test 
runs. From the figures, we can see tha t  as the accuracy 
of the EN0  schemes increases, the resolution of the 
captured shock beconies better. Again, the modified 
E N 0  schemes tend to be slightly niore oscillatory in 
the interaction area.  

Shock-Wave Interference Heating on a Cylinder 

Fig. (9) shows a schematic of the  flow field taken 
from Ref. [21]. The  peak heating rates generated on 
the  blunt leading edge by a shock incident on the bow 
shock in the stagnation region can be  orders of magni- 
tude greater than the stagnation value in the  absence of 
the interaction. Since the intense shock waves, shear 
layer and viscous boundary layer t ha t  occur and in- 
teract with one and the  other in a very small area, the 
problem is a very stiff one for numerically computat.ion. 
Especially for type IV interaction, which shows most 
severe interference heating, i t  has been found tha t  the  
flow field inherently unsteady which makes numerical 
computation more difficult. 

Previous studies include experimental studies[”], 
theoretical studies, and  numerical studies[23’ 24, 211. 

Most of the  previous numerical studies have been lini- 
ited t o  2nd order accuracy. The  results showed tha t  
accurate computation of heat transfer rate is crucially 
dependent on the shock resolution in the  numerical so- 
lutions. Therefore, E N 0  schemes with higher than  2nd 
order accuracy can be  very useful to capture the  flow 
physics with high accuracy. 

We choose the type IV shock wave interfence heat- 
ing case to evaluate the performance of the  high order 
E N 0  schemes in computing hypersonic flow with com- 
plex shock-shock and boundary layer interaction. T h e  
results of the E N 0  schemes are compared with the ex- 
perimental results. T h e  flow condition chosen t,o bc 
one of the cases studied by Thareja et .  T h r  free 
stream flow above and below the imping shock wave 
are: 

M ,  = 8.30 
T, = 111.561i 
p ,  = 986.33N/m2 
Cylinder Radius = 1.5in. 
ow = 0 

M i ,  = 5.25 
?’,,I, = 294.441; 
6 = 12.5’ 

where pm is the free stream flow angle and 6 is the flow 
deflection angle across the iniping shock wave. 

Since the main purpose of this paper is t o  compare 
the  third order accurate E N 0  scheme with the first 
and second order schemes, a relative coarse 80 x 68 
grids are used for this problem as a test case. Fig. 10 
shows the  computation grids used in the present st,ud- 
ies. The  implicit method is used with a CFL number 
of 50-100 to drive the iteration to a solutions to steady 
s ta te  with each run takes about 1000 iteration. Thc 
Roe scheme with entropy correction (c = 0.2) is used 
in the inviscid flux evaluation. T h e  problem has been 
show experimentally and numerically to be  marginal 
unsteady[211. Our computations d o  show tha t  the re- 
sults will not converge to a relative11 stable pattern.  
Therefore, the results showed in this papr r  are the re- 



sults at a particular moment in this marginal unsteady 
flow. 

On the  other hand ,  for mesh cell located at the 
shock-shock interaction point in the present test case, 
there are not enough smooth grid points for high or- - der E N 0  interpolation to be  nonoscillatory. Similar 
one-dimensional cases exist when two one dimensional 
shock waves meet each otherL3]. As a result, higher or- 
der polynomial interpolation may produce nonphysical 
negative pressure and  density. Followed Harten et. al., 
the order of reconstruction will he reduced locally if 
the  following condition is not met  at a cell during the 
reconstruction, 

and 

where f i  and p a r e  the  cell average pressure and density, 
and  p and p are point values obtained by E N 0  recon- 
struction within the same cell. The  order reduction is 
done only in the local one or two cell points near the 
shock interaction point and does not affect the overall 
accuracy in the  smooth region. 

Figs. (11) to (13) show the Mach number contours 
of the  solutions using the  first, second, and third order 
accurate EN0 schemes. These figures show tha t  as 
the  orders of the EN0 schemes increase, the  resolution 
of the  solutions in the interaction area improves and 
thc  arbitrary accurate EN0 schemes do capture the 
detailed flow physics better. 

Figs. (14) and (15) show the  comparison of surface 
heating rate and surface pressure with experimental 
measurement by Wieting and Holdenl2*1. These results 
are reanalyzed and published by Thareja e t .  
They also compared these experiment,al results with 
their numerical results using finite element methods. 
Followed the  treatment of Tharcja et .  al. the pcak 
heat.ing rate and surface pressure in our results are 
normalized by those of undisturbed stagnation values, 
QO = 41.43Btu/ft2s and palp, = 83.5. 

From the figures, we can see tha t  the numerical re- 
sults follow the  same trend of the experimental results, 
though the  location of peak heating rate is off by about 
7 degrees. This  may be  due t o  the coarse 80 x 68 grids 
used for this problem and interaction region is not re- 
solved with enough grid resolution. Meanwhile, the lo- 
cation of the  peak heating rate is very sensitive to the 
location of the impingingshock. Our grids are not fine 
enough to locate the  imping shock accurately. Further 
studies are needed to resolved this issue. Still the third 
order E N 0  scheme works quite well for the present test 
cases and are particular useful for this kind of hyper- 
sonic coniput,ations. 
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IV. Conclusions 

The  essentially nonoscillatory (ENO) schemes, which 
are uniformly high order accurate, have been applied 
t o  two-dimensional compressible viscous flow with solid 
boundaries using body-fitted structured grids. Im- 
plicit E N 0  schemes for solving the Navier-Stokes equa- 
tions have been applied to test cases of steady high- 
Reynolds-number viscous flows. The  test cases include 
supersonic boundary layer, shock/houndary-layer in- 
teraction flow, and type IV shock-wave interference 
heating on a cylindrical lead edge. Results of the  EX0 
schemes of up to uniformly third order accuracy for 
solving the Navier-Stokes equations have been obtained 
for these test cases. 

The  following conclusions have been reached: 

1. Steady s ta te  solutions of viscous flows can be ob- 
tained efficiently by using the  implicit 2-D E N 0  
schemes. 

2. Higher order accurate E N 0  schemes lead to better 
accuracy in capturing the  shock waves and  resolv- 
ing the boundary layers which are important for 
hypersonic flow computation. 

Acknowledgements 

This research was supported by AFOSR grant 
F49620-92-5-0090 

References 
[l] National Research Council ( U S . ) .  Committ.ee on 

Hypersonic Technology for Military Application. 
Hypersonic technology for military application 
Technical report, 1989. 

[2] A .  Harten. High resolution schemes for hyperbolic 
conservation laws. J .  of Comp. Phys., 49:357-393, 
1983. 

[3] A .  Harten, B. Engquist, S. Osher, and 
S. Chakravarthy. Uniformly high order accurate 
essentially non-oscillatory schemes, 111. Journnl 
of Compula l iond  Ph.ysics, 71(2), August 1987. 

[4] Bram van Leer. Towards the ult imate conserva- 
tive difference scheme. V .  a second-order sequel to 
Godunov’s method. Journal of Comp. Phys., 32, 
1979. 

[5] J .  Y. Yang. Third order nonoscillatory scliemcs 
for the Euler equations. AIAA Paper 90-0110. 

[6] T . J .  Barth and P.O. Frederickson. Higher order so- 
lution of the eulcr equations on unstructured grids 
using quadratic reconstruction. AIAA Paper 90- 
0013, January 1990. 



[7] J .  Casper. Essentially Non-Oscillatory Shock Cap- 
turing Schemes t o  Multi-Dimensional Systems of 
Conservat ion Laws. P h D  thesis, Old Dominion 
University, December 1990. 

[8] Chi-Wang Shu, G.  Erlebacher, T .  A. Zang, u D. Whitaker, and  S. Osher. High-order EN0 
schemes applied t o  tw- and three-dimensional 
compressible flow. Report 91-09, CAM, 1991. De- 
par tment  of Mathematics, University of Califor- 
nia, Los Angeles. 

191 H. L. Atkins. High-order EN0 methods for the 
unsteady compressible navier-stokes equations. 
AIAA Paper 91-1557. 

[lo] P. L. Roe. Approximate riemann solvers, param- 
Journal OJ eter vectors and difference schemes. 

C a m p .  Phys . ,  43:357-372, 1981. 

[ I l l  C .  Shu and  S. Osher. Efficient implementation 
of essentially non-oscillatory schemes. Contrac- 
to r  Report  ICASE Report No. 87-33, NASA, May 
1987. 

[I21 R .  W. MacCormack. Current status of numeri- 
cal solution of the  Navier-Stokes equations. AIAA 
Paper  85-0032, AIAA, January 1985. 

[I31 A. M.  Rogerson and E. Meiburg. A numeri- 
cal study of the  convergence properties of E N 0  
schemes. Journal of Scientific Computing, 5:151- 
167, June  1990. 

[I41 Chi-Wang Shu. Numerical experiments on the ac- 
curacy of EN0 and modified EN0 schemes. Jour- 
nal oJScientific Computing,  5:127-149, June 1990. 

[15] S.R. Chakravarthy, K.-Y. Szema, and C:L. Chen. 
A universe-series code for inviscid cfd with space 
shuttlc applications using unstructured grids. 
AIAA Paper 91-3340. 

4 

[I61 Ami Harten and Sukumar R .  Chakravarthy. 
Multi-dimensional E N 0  schemes for general ge- 
ometries. Report 91-16, CAM, August 1991. De- 
par tment  of Mathematics, University of Califor- 
nia, Los Angeles. 

[17] S.  L. Lawrence, J .  C. Tannehill, and D. S. 
Chausee. Upwind algorithm for the parabolized 
Navier-Stokes equations. A I A A  Journal, 27(9), 
September 1989. 

[ l8] R. W. MacCormack. A numerical method for 
solving the  equations of compressible viscous flow. 
A I A A  Journal,  20(9), September 1982. 

[lo] R. J .  Hakkinen, I .  Greber, L. Trilling, and S. S. 
Abarbanel. The  interaction of an oblique shock 
wave wit,)] a laminar boundary layer. Memo 2-18- 
59\Y, NASA, 1959. 

L, 

[20] Z. Wang and B. E. Richards. High resolution 
schemes for steady flow computation. Journal of 
Compuiational Physics,  97:53-72, 1991. 

[Zl] D. Gaitonde and J.S. Shang. The  performance of 
flux-split algorithms in high-speed viscous flows. 
AIAA Paper 92-0186. 

[22] A. R .  Wieting and M. S. Holden. Experimental 
shock-wave interference heating on a cylinder at 
mach 6 and 8. A I A A  Journal, 27, 1989. 

[23] R. R. Thareja et. al. A point implicit unstruc- 
tured grid solver for the euler and navier-stokes 
equations. International J .  for Numerical hfcih- 
ods in Fluids, 9:405-425, 1989. 

[24] G .  H.  Klopfer and H. C. Yee. Viscous hyper- 
sonic shock-on-shock interaction on blunt coa l  
lips. AIAA Paper 88-0233. 

[25] M.S. Holden and J .R .  Moselle. Theoretical and 
experimental studies of the  shock wave-boundary 
interaction on compression surfaces in hypersonic 
flow. Technical report arl 70-0002, Aerospace Re- 
search Lab, WPAFB,  OH,  January 1970. 



D t w n ~ ~ b ~ s r r n e o v  owso - 

... Pndoider 

P n d o r C a m  rnodKcaflon 
V Y  

0.w25 ~ 

0 ww 
0.W 0 25 O M  0.75 1.W 

UNINF 

Figure 1: Comparison of velocity profiles of the 
EN0 schemes of first and second order and the 
boundary layer theory across supersonic bound- 
ary layer. 

Figure 2: Comparison of velocity profiles of the 
E N 0  schemes of third order and the boundary 
layer theory across supcrsonic boundary layer. 

0 WnPv byerfheav 

Irlomer 

Pndoider 

-. Pndarder r m  WihcaUon 

--- 3rdOrPr 

0.W50 

V - 3rdomerm WKal" 

0.w25 - 

Figure 4: Sketch of the flow field of 
shock/boundary-layer interaction. 

Figure 3: Comparison of temperature profiles of 
tho E N 0  sc1ic:nies of 1st to  third order and the 
bonndary layor thc!ory across supersonic bound- 
ary layer. 

Figure 5: Comparison of skin friction coefficic:nt 
along plate surface for shock/boundary-1ayt:r in- 
teraction flow. 
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Figure 6: Pressure contours obtained by using 
the first order E N 0  scheme. 

Figure 7: Pressure contours obtained by using 
the second order E N 0  scheme with Shu's mod- 
ification. 

Figure 8: Pressure contours obtained by using 
thc third ordw E N 0  scheme with Shu's modi- 
fication. 
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Figure 9: Schematic of type IV shock-wave inter- 
ference heating on a cylindrical loading edgo. 

Figure 10: 
type N shock interference flow at  M, = 8.03 

Computational grids employed for 



Figure 11: Mach numher contours for first order 
accurate E N 0  scheme for type IV shock inter- 
ference f low a t  M ,  = 8.03 

Figure 12: Mach number contours for sccond or- 
dt:r accuratc? E N 0  scheme for type IV shock in- 
tt!rforc:nce flow at &I, = 8.03 

Figure 13: Mach number contours for third ori1c:r 
accurate E N 0  schenie for type TV shock inter- 
ference flow at  M ,  = 8.03 
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Figure 14: Surface heat transfer rate Q/Qo for 
type IV shock interference flow at Af, = 8.03 
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