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Abstract 

Using the Burnett equations is one way to advance 
the continuum approach based on the Navier-Stokes 
equations into thc continuum transition flow regime 
for rarefied hypersonic flow. Though two-dimensional 
flow-field numerical solutions of the Burnett equations 
have been obtained in our previous studies, it is still 
uncertain how to formulate boundary conditions for 
the higher-order Burnett equations. Furthermore, few 
comparative studies have been performed to validatc 
the  Burnett equations in multidimensional appliclt- 
tions. This paper presents a new method to formu- 
late the additional boundary conditions for the Burnett 
cquations. The  new method for the Burnett equations 
requires the same number of physical surface slip con- 
ditions as for the Navier-Stokes equations. We subse- 
quently have obtained numerical solutions of the  two- 
dimensional Burnett equations with the new boundary- 
condition treatment for hypersonic flow past a cylinder 
where Knudsen numbers range from 0.02 to 0.4. The  
results show tha t  the Burnett solutions with the first 
order slip conditions agree better with DSMC results 
than  the  Navier-Stokes solutions do, bu t  the Burnett 
solutions with the Schamberg second order slip condi- 
tions seem to be inaccurate for Knudsen numbers above 
0.2. 

'v 

I. Introduction 

Motivation 
Recently, there have been active research activities 

in developing theoretical and computational models for 
nonequilibrium rarefied hypersonic flow because of the 
developmcnt of future hypersonic vehicles, such as the 
National Aerospace Plane[']. These vehicles arc antic- 
ipated to involve operations at high atmospheric al- 
titudes where the hypersonic flows around the vehi- 
cles belong to the continuum transition regime. The  
main computational approaches for these nonequilib- 
rium rarefied hypersonic flow arc the direct simulation 
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Monte Carlo (DSMC) approach['] and  the continuum 
computational fluid dynamics (continuum C F D )  ap- 
proach. These two approaches are complementary to 
cach other in studying rarefied hypersonic flow at high 
altitudes. 

T h e  DSMC approach, which simulates the  gas flow 
from a molecular point of view, has been the most 
effective predictive tool for studying rarcficd hyper- 
sonic flow. Its main disadvantage is the requirement 
for extremely large computer memory and long com- 
puter time. Particularly when the flow approaches the 
continuum limit, the  DSMC approach becomes more 
and more computationally intensive for practical ap- 
plications with today's supercomputers. Therefore, the 
DSMC approach is naturally appropriate for flow with 
large Knudsen number (Iin > 1) and becomes compn- 
tationally expensive as Knudsen decreases. 

On the  other hand, the  continuum CFD approach, 
which numerically solves the partial differential equa- 
tions of macroscopic conservation equations, is much 
more computationally efficient than the DSMC ap- 
proach. For flow in thc continuum regime with very 
small Knudsen number ( K n  < 0.01), the conventional 
Navier-Stokes equations are the appropriate governing 
equations. However, as the flow becomes more rarefied 
and the  Knudsen number becomes non negligible, the 
Navier-Stokes equations become inaccurate. Therefore, 
the continuum approach is the appropriatc approach 
for flow in thc continuum regime and  more accurate 
continuum models than the Navier-Stokes equations 
are needed as Knudsen increases. 

For hypersonic flow in the continuum transition 
regime, which corresponds to small but non negligible 
Knudsen numbers, both DSMC and continuum C F D  
approaches can be used. 

This paper is concerned with extending the  contin- 
uum approach into the transition regime, where the 
central issue is to develop an advanced set of continuum 
equations to improve the accuracy of the Navier-Stokes 
equations near the continuum limit. The  goal of our 
research is to develop a computationally efficient and 
reasonably accurate computational models for practi- 
cal multidimensional computations of hypersonic flow 
fields in this flow regime. 

Copyright 01993 by Xiaolin Zhong. Published by the 
American Institute of Aeronautics and Astronautics, Research on Burnett Equations 

V Inc. with permission. One of the proposed continuum models for hyper- 

I 



sonic flow in the continuum transition regime is the 
Burnett e q u a t i o n ~ ~ ~ l ,  which are the continuum con- 
servation equations with higher order stress and heat 
flux constit,ut,ivc relations than the Navier-St,okes equa- 
tions. T h e  Burnett  equations were first proposed by 
Tsienr4] in 1946 as constitutive relations for hypersonic 
slip flow. Subsequent applications of the Burnett equa- 
tions to hypersonic flow were not successful because of 
many theoretical and computational difficulties. 

There are, among others, two major difficulties in 
applying the Burnett  equations to hypersonic flow, 

1. T h e  Burnett numerical solutions for hypersonic 
flow could not be obtained due to an inherent in- 
stability of the  equations to high frequency distur- 
bances. This instability precluded any application 
of the Bnrnett  equations to hypersonic flow com- 
putations. 

2. There is no generally accepted method for formu- 
lating boundary conditions for the Burnett equa- 
tions. T h e  Burnett  equations are a one order 
higher set of equations than the Navier-Stokes 
equations. For flow-field computations, the higher 
order Burnett equations require more boundary 
conditions in addition to those required for the 
Navier-Stokes equations. However, there was no 
clear guide for how t,o formulate these additional 
boundary conditions. 

T h e  simplest rarefied hypersonic flow problem to test 
the validity of the Bnrnett equations is one-dimensional 
flow structure across shock waves which do not in- 
volve the  uncertainty of formulating boundary condi- 
tions. Early research showed tha t  no hypersonic solu- 
tions of the equations could be obtained for even the 
simpleshock structure[53 6l for an upstream Mach num- 
ber larger t,han about 1.9. Because of the difficulty in 
obtainingsoliitions. the Burnett equations were consid- 
ered  useless['^ until the  research by Chapmanet .  al!'] 
on applying the Burnett, equations to one-dimensional 
shock wave structure in 1988. 

In  1988, Fiscko and  Chapman[", ''I first reinvesti- 
gated the Burnett equations and obtained shock- wave 
solutions of the Burnett equations for some, but not 
all, monatomic gas models by using a time-marchin 

extended the studies to diatomic gas with a rotational 
nonequilibrium model and  obtained shock-wave solu- 
tions of the Burnett equations in nitrogen with cou- 
pled translational-rotational nonequilibrium. All  their 
results show tha t  the  Burnett equations always agree 
hetter with the DSMC results than the Navier-Stokes 
equations do. These studies, as well as some other 
studies by Iiogan et .  al.[I3l, suggest tha t  the Burnett 
eqoations, once considered useless, may be the appro- 
priate governing equations for hypersonic flow in the 
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numerical method. Later, Lumpkin and Chapman 1127 

V continuum transition rcgime. 

The  studies of Fiscko et .  ai. however, did not  solve 
the two difficulties of the Burnett equations disciissed 
above and therefore their computations had stability 
difficult,ies when fine grids were used to compute solu- 
tions for the Burnett equations for strong shock waves. 
This difficulty was analyzed and overcome by Zhong, 
MacCormack, and in 1991. By using sta- 
bility analysis of the linearized Burnett equations, they 
pointed out that  the stability difficulties in their com- 
putations are caused by the instability of the  Burnett 
equations to disturbances of small wavelengths. This 
fundamental instability arises in numerical computa- 
tions when the grid spacing is less than the  order of a 
mean free path,  and niakes it impossible to use these 
equations to compute flow with fine resolution and  to 
compute flow in two and three dimensions above a cer- 
tain altitude for any vehicle. They proposed to stabi- 
lize the Burnett equations while maintaining the Bur- 
nett level of approximation by augmenting stress and  
heat flux terms in the Burnett equations with some still 
higher order terms. Subsequently, they obtained shock 
wave solutions for all monatomic gas models by using 
very fine grids, the first known two-dimensional Bur- 
nett solutions for hypersonic flow past  blunt leading 
edges, and other two dimensional 

liitions for one-dimensional shock structure obtained 
by Zhong et. al.['41 and by Lumpkin et .  a1.[I6l agree 
well with DSMC results. Meanwhile, Pham-Van-Diep 
et. al.['q also compared the augmented Burnett solu- 
tions with their DSMC results for monat,omicgases and 
concluded that the shock shapes are more accurately 
describcd by the Burnett equations than  the  Navier- 
Stokes equations. 

Though the first dificulty of the Burnett  equations 
discussed above has  been solved and  two-dimensional 
numerical solutions of the Burnett equations have been 
obtained, the second difficulty is still a major obsta- 
cle in the practical applications of the Burnett equa- 
tions, i.e., the formulation of boundary conditions for 
the Burnett equations. In Our previous numerical com- 
putabions of the two-dimensional Burnett equations in 
[14], the additional boundary conditions on the  wall 
surface are computed by using extrapolation from the 
interior flow field variables. This boundary condition 
method is not satisfactory from a theoretical point of 
view and can raise the question of the  uniqueness of 
the so-obtained solutions. 

On the other hand, like the shock wave structure 
problems, the flow-field solutions of the  Burnett  equa- 
tions need to be validated by comparison with either 
experimental data,  or DSMC results. However, only 
limited comparative studies have been performed to 
evaluate the merit of these equations in multidimen- 
sional applications. The  effect of Burnett  equations 
on two-dimensional and three-dimensional hypersonic 

The  augmented Burnett so- 
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transition flow computations has not been fully stud 
ied. 

O b j e c t i v e s  
This paper is the continuation of our previous studies 

in applying the  Burnett equations to hypersonic flow 
in the continuum transition regime. The  objectives of 
this paper are to propose a new method in formulating 
additional boundary conditions for the Burnett q u a -  
tions and to obtain flow-field numerical solutions of 
the Burnett equations for comparison with DSMC and 
Navier-Stokes results. 

First, we present a new method, which is an exten- 
sion of the ideas of Schamberg['*] and M a k a s h e ~ [ ' ~ ]  but 
is much simpler for computations, of specifying addi- 
tional boundary conditions for the Burnett equations. 
The  new method requires the same number physical 
slip conditions as those required by the Navier-Stokes 
equations. The  additional boundary conditions for the 
higher order terms in the Burnett equations are derived 
from the corresponding Navier-Stokes solutions. The  
Burnett solutions obtained by using the ncw boundary 
condition formulation are accurate up to the Burnett 
level of approximation to the Boltzmann equation. 

Second, we obtain numerical solutions of the two- 
dimensional Burnett equations with the new formula- 
tion of boundary conditions for Mach 11 flow past a 
cylinder. Computational cases of the flow computed 
so far have free stream Knudsen numbers ranging from 
0.02 to 0.6. For each case, we have computed the solu- 
tions of the Navier-Stokes equations, the Burnett q u a -  
tions with the first-order Maxwell/Smoluchowslii slip 
Conditions and the Burnett equations with the second- 
order Schamherg slip conditions. The  effect of slip 
conditions on the solutions are studied. A detailed 
comparative study on the Burnett, Navier-Stokes, and 
DSMC solutions are carried out for one of the cases 
of freestream Knudsen number 0.2. Meanwhile, for 
other cases, the Burnett solutions are compared wi th  
the Navier-Stokes solutions. These results can be used 
for future comparisons with DSMC results when the 
later are available. 

v 

v 

11. Governing Equations 

Burnett Equations 
It  is generally accepted tha t  the governing equation 

for gas flow ranging from the continuum to the free 
molecular regime is the Boltzmann equation, which 
describes the time rate of change of the distribution 
function due t o  molecular motion and collisions. The  
gas flow a t  both the molecular and macroscopic levels 
is fully specified by the distribution function, which is 
the fraction of the particle number in a unit volume in 
the phase space. The  macroscopic flow variables are 
simply thc moments (the averages) of the distribution W 

function. Milltiplying the Boltzmann equation by func- 
tions of the molecular velocity ci and integrating over 
the whole velocity space lead to the moment equations 
of the Boltzmann equation. Specifically, t,he moment 
equations of molecular mass, momentum and energy of 
the Boltzmann equation leads to the macroscopic con- 
servation equations of mass, momentum and energy, 
i.e., (in two-dimensions): 

au a~ ac 
at ax ay - + - + - = o  

where 

p = pRT (5) 

L 

The  conservation equations (1) are the governing 
conservation equations in the continuum approach and 
are generally valid for flow from continuum to free 
molecular regime. However, they d o  not form a closed 
set of partial differential equations because the addi- 
tional stress terms oij and heat flux terms qi are not 
given in the conservation equations. Therefore, if Eqs. 
(1) are solved as the governing equations in the con- 
tinuum approach, additional equations relating uij and 
q j  to gradients of macroscopic flow variables, i.e., the 
constitutive equations, are needed in order to close the 
equations. It is these constitutive relations tha t  intro- 
duce approximation to the generally valid conservation 
equations. 

For gas flow not very far away from equilibrium 
(small Knudsen numbers), the Boltzmann equation can 
be solved by t,he Chapman-Enskog method[', 201, which 
is an  asymptotic perturbation expansion start ing from 
the equilibrium Maxwellian distribution fo, 

f = fo + fi + f 2  + + , . . + f" + W i n " "  ) ( 7 )  

where the n represents the order of approximation with 
respect to the Knudsen number I in .  From the distri- 
bution function above, we can derive the constitutive 
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relations for a gas flow at small I i n  as approximate 
solutions of the Boltzmann equation as follows, 

Maxwell Molecules 
1013 

2 
3 
0 
3 
8 

7518 
-4518 

-3 
3 

11714 

v 

Hard-Sphere Molecules 
4.056 
2.028 
2.418 
0.681 
0.219 
7.424 
11.644 
-5.822 
-3.090 
2.418 
25.157 

In Eq. (8), the zeroth order approximation corre- 
sponds to t.he equilibrium flow conditions of the Euler 
equations, i t . ,  the stress and heat flux terms vanish. 
A s  l i n  increases, the flow departs from thermodynamic 
equilibrium. Consequently, more and more high order 
terms in Eq. (8) become significant and are needed to 
approximate the Boltzmann equation. Retaining the 
first two terms in Eq. (8) results in the first-order ap- 
proximation corresponding t o  the constitutive relations 
of the Navier-Stokes equations. Similarly, retaining the 
first three terms in Eq. (8) results in thc second-order 
approximat,ion corresponding t o  the constitutive rcla- 
bions of the Burnett equations. 

The  general tensor expressions of the Burnett, con- 
stitutive relations are as follows, 

- a 1 ap auk au, aui auk + w 2 [ - - ( - - ) -  -- -2--] axi axj axi ax, ax, axj - 
1- 

axiaxi p~ axi ax i  + w q - - -  + U S  R- 
a2T 

ax, a x j  
R 8T aT + ws + wg - - ~a~~ axj 

and 

where p is the viscosity coefficient, ti is the coefficient 
of thermal conductivity, and  a bar over a derivative 
designates a nondivergent symmetrical tensor, 

The  detailed cxpressions of the Burnett stress terms 
written in two-dimensional Cartesian coordinates can 
he found in [14]. In Eqs. (9)  and ( l o ) ,  the coeffi- 
cients wi’s  and O i ’ s  can bc computed by using the 
Chapman-Enskog expansion with a molecular repulsive e 

force model. So far, only the coefficicnts for t,he two ex- 
treme cases, the hard-sphere and the Maxwellian gas 
models, have been computed to a high order accuracy 
as follows: 

The  conservation equations (1) together with the 
Burnett second order constitutive relations given by 
Eqs. (9) and (10) are termed the Burnet,t equations. 
The Burnett stress and heat flux relations consist of 
the first order Navier-Stokes terms plus second order 
terms. Wheti the Knudseri number is negligibly small 
compared to 1, the second order terms are negligible 
compared with the first order terms and the Burnett 
equations reduce to the Navier-Stokes equations. Itfow- 
ever, when the Knudsen number is less than 1 but not 
negligibly small, the second order stress terms are ex- 
pected to be non negligible compared to the Navier- 
Stokes terms, and  the Burnett equations are expected 
to result in second order improvement over the Navier- 
Stokes equations. 

On the other hand, when I i n  is large compared to 
1, the flow is in the free moleculc regime and the con- 
tinuum approach herein is not expected to be valid. 
Therefore, we can only apply the Burnett equations to 
hypersonic flow in the continuum transition regime. 

Augmented Burnett Terms 
It  has been shown by Zhong et. al.[l4] tha t  the lin- 

earized conventional Burnett equations are unstable to 
disturbances of small wavelengths. They subsequently 
proposed “augmented” Burnett equations to stablized 
the  conventional Burnett equations while maintaining 
the second order accuracy of the Burnett level of ap- 
proximation. The  augmented Burnett equations are 
formed by augmenting the Conventional Burnett stress 
and heat flux terms with some terms of third-order 

which are picked from the third order su- 
equations, but have different coefficients 

to ensure both analytical and numerical stability. The  
resulting constitutive relations for the augmented Rur- 
nett equations are as follows: 
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where the u!,"' and qiB1 are given by Eqs. (9) and ( l o ) ,  
and the augmrnted t r rms  u i '  and q:"' are 

(14) 06 - RT a -(---I) axp 
p axi axkaxk 

where w i  = 219, 06 = -518, and B i  = 11/16. 
T h e  Burnett  solutions in this paper are the numer- 

ical solutions of Eq. ( 1 )  together with the constitutive 
relations given by Eq. (12). We use the augmented 
Burnett equations to obtain solutions accurate up to 
the Burnett level of approximation without the insta- 
bility of the equations to high frequency perturbation. 

111. Boundary Conditions 

Slip Boundary Conditions 
T h e  Chapman-Enskog expansion, which lcads to the 

Navier-Stokes equations and the Burnett equations, re- 
sults in increasingly higher order sets of partial equa- 
tions a s  the order of approximation becomes higher. As 
a result, the Burnett equations are a one order higher 
set of equations than the Navier-Stokes cquations. 

At the Navier-Stokes lcvel of approximation, thc 
equations are second order differential equations, and 
the boundary conditions on the surface arc the ve- 
locity slip and temperature j u m p  conditions plus aero 
normal velocity conditions. The  physical slip bound- 
ary conditions, which include t,he velocity slip and 
tcmperature j u m p  conditions, can be derived b con- 
sidering a Knudsen layer flow on the snrfac$3] or 
by considcring momentum and energy balance on the 

Both methods result in similar results for 
first order slip conditions which are generally termed 
the Mazwel l /Smoluchows~i  slip conditions['], 

U 

where X is the mean free path computed by X = 
lGh/(5p-), u is the  reflection coefficient, u is the 
accommodation cocfficient, and T, is thc wall temper- 
ature. The  slip conditions above have been used exten- 
sively in computing slip flow by using the Navier-Stokes 
cquations. 

At the Burnett lcvel of approximation, however, the 
equations are third order differential equations. The  
only availahlc hoiindary conditions are the same kind U 

of slip conditions as those for the Navier-Stokes equa- 
tions. In principle, the Burnett cquations require sec- 
ond order slip conditions derived by solving the  Boltz- 
niann equation in the Knudsen layer. Ilowever, the 
only available second order slip conditions were those 
derived by Schamherg using momfn tum and energy 
balance cquations with the Burnett  molecular distri- 
bution on thc wall, i.c., the Schamberg second order  
slip condilions["', 

a2T 
- 3 a i R ( R T ) l i 2  - axay 

- -alR- 3 ( R T ) ' ~ ~  (-- m a p  + --) ""]  (17) 
2 ax a y  ay ax 

+ ( E ) ?  [e ,T (%)' au +e2T(RT)"2 - axl1 
P axay 

i a f a r  RT spar 
ap ax ax ax ax + -RT -- + e6- -- 

a2T 2 

ax2 ax + e6RT - + e i R  (-) 

where, 
= 1 / 2  2-0 

a1 =(?I ( " 

s l j 2  1 -1-a +'(%)I 
e2  = - ( T )  [,( 01 ) 2 r 
e3 = -'(E)l/2(-1-a 2 2  

x 1 / 2  33 4 a 
e4 = -(I) IT(%) - a ( - s ) l  

61 = -5.167 
e l  = -[0.31665+ :(v)z - a($$)(%) 

1 2 - 0  

eg = 107156 
e i  = -7.9888 
e8 = -5.4912 

The  Schamberg slip conditions have only been uscd i n  
solving slip flows for some simple Couette noWs[l8, "1. 
As what will be discussed later, the assumption by 
Schamherg tha t  the Chapman-Enskog distribution is 
valid on the wall within the  Knudsen layer is question- 
able. The  merit of this assumption can be validated 
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by comparing Burnett flow-field solutions obtained by 
using the Schamberg boundary conditions with DSMC 
results. 

For the higher order Burnett equations, it is expected 
that additional boundary conditions are necessary in 
order to ohtain a unique set of solutions for the Burnett 
equations. Ilowever, there is no  physical basis on how 
to specify the  additional boundary conditions. Cur- 
rently thcre is no satisfactory method in formulating 
these additional boundary conditions for the Burnett 
equations. Two methods to solve the additional bound- 
ary conditions problem was proposed by Schamberg(181 
and by M a k a s h e ~ [ ' ~ l  for the Burnett equations. 

Schamberg's Method 
Schambcrg['81 argued tha t  the Burnett equations re- 

quire the same number of physical surface slip bound- 
ary conditions as the Navier-Stokes equations, and the 
solutions accurate up to the Burnett level of approxi- 
mation can be obtained by a perturbation series start- 
ing with the  Navier-Stokes solutions. This expansion 
solutions of the Burnett equations require no additional 
boundary conditions for higher order solutions, because 
a t  each level of approximation the higher order deriva- 
tive terms are evaluated by the known lower level of 
perturbation solutions. 

The  assumption of Schamberg's method is that no 
radical change of the flow pattern is expected when pro- 
ceeding from the Navier-Stokes solutions to the Bur- 
nett solutions in the flow field including the boundary 
layer. The  Burnett solutions are only a small improve- 
ment over the Navier-Stokes solutions. This situation 
is different from the transition from Euler solutions to 
Navier-Stokes solutions, where a radical change occurs 
in the  appearance of the  boundary layer. 

Schamberg's method seems to be appropriate, and 
can be validated by using the DSMC results. IIowcver, 
his method does not solve the simultaneous set of par- 
tial differential equations corresponding to the Burnett 
equations. Instead, the Burnett solutions are solved as 
perturbation solutions starting from the Navier-Stokes 
equations. In numerical computations of hypersonic 
Rows. It is more convenient and preferable to solve the 
Burnett equations a? a simultaneous set of equations. 
If so, Schamberg's method can not be used. 

Makashev's Method 
Makahev[19] proposed a method to construct addi- 

tional boundary conditions for the simultaneous Bur- 
nett equations. Ilis argument, which is similar to tha t  
of Schamberg, tha t  if the Burnett solutions are ex- 
panded as a perturbation series using the Navier-Stokes 
equations as leading terms, no additional boundary 
conditions are required But if the Burnett equations 
are to be solved as a simultaneous set of partial differ- 
ential equations, additional boundary conditions will 

he required. The  additional boundary conditions can- 
not be arbitrarily specified; they must he formulated to 
be consistent with the expansion solutions so that no 
singularity cansed by the presense of higher derivatives 
mult,iplied by small parameters (Knudsen number) will 
be present,. Subsequently, hlakashev formulated the 
additional boundary conditions for second order equa- 
tions based on the first order solutions. The  solutions 
are accurate up to the second order approximation. 

IIowever, the boundary conditions of Makashev in- 
volve complicated analyses and his formulas for addi- 
tional boundary conditions are complicated and are dif- 
ficult to implement in obtaining numerical solutions for 
the Burnett equations. 

New Formulation of Boundary Conditions 
We propose a new simplified method of formulating 

the additional boundary conditions for the simultane- 
ous Burnett equations. The  uew method is an  exten- 
sion of the Schamberg and Makashev's methods hut  is 
simpler and easier to implement in numerical conipu- 
tations. 

When the Boltzmann equation is solved by nsing the 
Chapman-Enskogor the Hilbert method, the perturba- 
tion expansion is singular at the wall. The  flow field is 
divided into the  outer field, which includes the  regular 
boundary layer, and the inner field, which is a thin layer 
a few mean free paths thick separating the wall from 
the outer field. This inner field is termed the Knud- 
sen layer. The  Chapman-Enskog expansion, which is 
an  outer expansion based on small Knudsen number, is 
valid only in the outer field. Therefore, the Chapman- 
Enskog expansion, as well as the  Navier-Stokes and 
Burnett equations are not valid in the  Knndsen layer 
where the the Boltzmann equation has to he used. 

In principle, the boundary conditions for the 
Navier-Stokes equations and the Burnett equations in 
the outer field can he obtained by t,he method of 
matched asymptotic e x p a n ~ i o n ~ ~ ~ l  between the outer- 
field Chapman-Enskog distribution and Knudsen layer 
solutions of the Boltzmann equation. Therefore, it 
is expected the slip velocity and temperature used as 
boundary conditions appropriate for the conservation 
equations in thc outer field are different from the ac- 
tual  valucs on the wall obtained hy solving the  Bolta- 
mann equation in the Knudsen layer. Figure 1 shows a 
schematic distribution of velocity across the Knudsen 
layer and  outer field. The  boundary condition for the 
Navier-Stokes equations is the slip velocity, us ,  which 
is different from the actual velocity, q, on the wall. 

For the flow equations in  the outer field, the 
Chapman-Enskog method leads to increasingly higher 
order equations which require additional boundary 
conditions for the higher order terms. IIowever, if the 
Burnett solutions are expanded as a perturbation series 
using the Navier-Stokes equations as leading terms, no 
additional boundary conditions are required. 



We use the following ordinary differential equations 
as ail example l.0 demonstrate the idea of formulating 
addit,ional boundary conditions for outer-field higher 
order equations, 

v cy" + y' = x (19) 
y(0) = 1 .  y'(0) = 2 (20) 

where c is a small positivc number. This equation cor- 
responds to the  Boltzmann equation with a singularity 

from the  inner field t o  outer field can 
he solved by a matched asymptotic expansion method. 
In the outer field, we assume the following outer-field 
expansion, 

Youter = Y1 + f Yz + ' ' ' (21) 
Substituting Eq. (21) into Eq. (19) leads to the pertur- 
bation equations, 

y; = x (22) 
Ya = 4 (23) 

In the equations above, for k-th order solution yn, 
the order of differential equations do not increase; the 
higher order terms only involve the known previous 
level solutions. Therefore only one boundary condition 
is needed for every level of approximation of outer-field 
equations. These houndary conditions can be derived 
by matching the outer solutions with the inner solu- 
tions in the intermediate area between the outer field 
and inner layer. 

In the inner layer on the  wall, we introduce a mag- 
nified inner coordinates. 

w 

s = 2/€ , Y ( X )  = y(2) (24) 

Y " + Y ' = c 2 , Y  ( 2 5 )  
Y(0) = 1 ,  Y ( 0 )  = 2c (26) 

Y = Y 1 + c Y z + . . .  (27) 

Y = 1 + < ( 2 - 2 e - " ) +  . . .  (28) 

Eq. (19) is transformed in the inner coordinates, 

Expanding the inner solutions, 

leads to the perturbation solutions of the inner layer, 

The  outer limit of the inner solutions equals to the 
boundary conditions for the outer solutions at x = 0 
as follows, 

yo"ler(.C = 0) = 1 + 2f + . , , (29) 
Therefore, the boundary conditions for the outer ex- 
pansion solutions a re  yl(0) = 1, ~ ~ ( 0 )  = 2, . . .. Solv- 
ing Eqs. (22) and (23) with these boundary conditions 
leads to the following outer solutions, 

The  outer expansion above is a good approximalion 
except in the inner layer, and it corresponds to the so- 
lution obt,ained by using Schamberg's method of spec- 
ifying boundary conditions for the Burnett equations. 

If the outer equations are to be solved as a simul- 
taneous equation i n  the outer field corresponding to 
the Burnett equations, one more boundary condition 
is needed in addition to the first boundary condition 
given by Eq. (29) .  Makashev set the additional bound- 
ary condition such tha t  the outer solutions of second 
order equations do not introduce new singularity on 
the wall as follows, 

y'(0) = [x - fy:lz=" + O ( ? )  (31) 

Makashev's method corresponds to Solving Eq. (19) 
with boundary conditions given by Eqs. (29) and  (31). 

However, the additional boundary conditions pro- 
posed by Makashev are often not easy to implement for 
complicated equations such as the Burnett equations. 
The  essential idea of Makashev's boundary conditions 
is tha t  the second terms on the wall can be evaluated 
by the known first order solution while maintaining 
the second ordcr accuracy of the solution. Therefore, 
we propose the following simple method, which still 
maintains the second order approximation. T h e  new 
method evaluated the higher order derivatives on the  
wall directly by using the first order solutions, i.e., 

y'(0) = y;(x = 0) (32) 

where y1 is the first order outer solution given by Eq. 

Makashev's method corresponds to Solving Eq. (19) 
with boundary conditions given by Eqs. (29) and (32). 
I t  can bc shown that the resulting solutions are accu- 
rate up to a second order approximation. 

Figure 2 shows the solutions of the ordinary differ- 
ential equation ( I S )  when c = 0.1. T h e  outer expan- 
sion solution agrees well wit,h t,be exact solutions ex- 
cept near the wall in the inner "Knudsen" layer when 
x < 0.25. On the other hand, the inner expansion so- 
lution agrees well with the exact solutions within the  
inner layer. The  boundary conditions for the  outer so- 
lutions are provided by matching the  inner solutions 
with the outer solutions. The figure shows tha t  the  
boundary conditions for the outer expansion equations 
are different from the actual boundary values on the  
wall. 

The  outer solutions obtaining by solving the simul- 
taneous outer equations with Makashev's additional 
boundary conditions (square symbols) and  with our 
new formulation (triangle symbols) are also plotted in 
the figure. In the figure. y1 is the first order outer 
solution. The  figure shows that solution obtained by 
using the new boundary condition formulation agrees 
very well with the solution obtained by using Makashev 

(22). 

v YO",,, = (1 + 2 / 2 )  + f (2  - 2) + ' ' ' (30) method and the exact solution in the outer region 
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Following the new formulation above, we can formu- 
late the additional boundary conditions for the Burnett, 
equations. When solving the Aurnett equations by us- 
ing the finite volume method, for example, the flux 
term G in Eq. (4) need t o  be evaluated on the wall at 
y = 0 .  Similar to the  analysisofthe example above, the 
new method evaluates the higher order Burnct,t stress 
and heat flux terms in G by using the known values of 
the corresponding Navicr-Stokes solutions. For exam- 

u 

ple, 

where the subscript n-s represents thc solutions of the 
Navier-Stokes solutions, which are the first order solu- 
tions. 

The  ot,her variables in G are evaluated by using the 
simultaneous Burnett solutions by using the physical 
velocity slip and temperature conditions. The  method 
is the similar to tha t  for the Navier-Stokes equations. 
The  difference here is that the Navier-Stokes equations 
use first order slip conditions appropriate to the Navier- 
Stokes level of approximation, hut the Burnett equa- 
tions, in principle, should use second order slip condi- 
tions appropriate to the Burnett level of approxima- 
tion. 

In principle, the second order slip conditions can be 
obtained by solving the Boltzmann equation in the 
Knudsen layer. The  second order slip conditions for 
the Burnett equations outside the Knudsen layer are 
the results of matching the Iinudsen layer solutions and 
the outer-field Chapman-Enskog distribution in the in- 
teraction region between the Knudsen layer and the 
boundary layer. To our knowledge, however, there has 
not been any work done in deriving these second or- 
der slip conditions based on considering the Boltzmann 
equation in the Knudsen layer. 

In our previous computations of numerical flow- 
field solutions of the Burnett equations, the additional 
boundary conditions for the Burnett equations are eval- 
uated by extrapolating the flow variables from the in- 
terior of the flow field. Our computations showed tha t  
this way of treating the boundary conditions for the 
Burnett, equations are numerically satisfactory. How- 
ever, this method of extrapolation does not have any 
analytical foundat,ion and may lead to the problem of 
non uniqueness of the Burnett cquations. Therefore: 
we replace it by the present formulation based on for- 
mal analysis. Comparing the results of the two metti- 
ods show tha t  Burnett solutions using the extrapola- 
tion method agree with those using thc new hound- 
ary conditions when the Knudsen number is less than 
about 0.2. 

W 

IV. Numerical Methods 

In this paper, thc two-dimensional Burnett equations 
are solved by using a finite volume implicit method["']; 
which is second order accurate in space and  is an ex- 
tension of the  implicit Gauss-Seidel method for the  
Navier-Stokes equations described by MacCorma~k[~'l .  
The  inviscid terms in the conservation equations are 
computed by using the second order modified flux- 
splitting method proposed by MacCormack["], and all 
the viscous terms, including the  Burnett, terms and 
augmented Burnett terms, are computed by using cen- 
tral difference approximations. T h e  additional hound- 
ary conditions for the Burnett equations are formulated 
by using the new method described in this paper. In 
order to solve the Burnett equations efficicntly by us- 
ing large t ime steps in the  numerical computations, t,he 
Burnett stress and heat flux terms and  the inviscid flux 
terms are treated implicitly by using the implicit line 
Gauss-Seidel iteration method. T h e  details of the nu- 
merical method can be found in [25] 

Depending on the freestream Knudsen numbers of 
the flow. CFL numbers in the computations are be- 
tween lo3 to lo8, and a computation usually converges 
after 500 to 1000 iterations. 

V. Flow-Field Burnett Solutions 

Hypersonic flow past a cylinder is computed by using 
the two-dimensional Burnett equations with the new 
formulation of boundary conditions. For each com- 
putational case, we have obtained the Navier-Stokes 
solutions with the first order slip conditions (N-S). 
the  Burnett equations with the  first order slip condi- 
tions (Burnett 1) and  the Burnett equations with the 
Schamherg's second order slip conditions (Burnett 2). 
Since the tangential derivatives offlow variables on the 
wall are much smaller than the normal derivatives, t h r  
Schamberg's second order slip boundary conditions arc 
computed approximately by keeping only the normal 
derivatives in Eqs. (17) and (18). 

Hypersonic flow past a cylinder is chosen as the test 
case for the Burnett equations because t,he flow field 
in the stagnation region i s  relatively uniform in lo- 
cal Knudsen numbers. Therefore, it is relatively easy 
to evaluate the Burnett equations together with a set 
of surface slip boundary conditions with a given free 
stream Knudsen number. At the  same time, the flow 
near the stagnation region and across the how shock 
wave is important for developing future hypersonic ve- 
hicles because this area involves the most severe surface 
heating rates and the most intense radiation. Since the 
main focus of this paper is on the  effect of the trans- 
lational nonequilihrium on hypersonic flow, the flow is 
assumed to he monatomic gas without other thermal 
nonequilibrium 
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The flow conditions are chosen to be the same as 
t,hose for the monatomic gas with a hard-sphere model 
calculated by \Vada, Koura, and MatsumotoiZ6] using 
the null-collision DSMC method of Koura. The  free 
stream Mach number is M ,  = 10.95, the wall of the 
cylinder is assumed to be a diffuse-reflection cold wall i. 
e., u = 1 and 0 = 1 and Two,, = T, = 3001i. The  gas 
is assumed to be a monatomic gas with a hard sphere 
gas model, i .  e.. Pr = 2/3, y = 5/3. The  viscosity 
cocfficient of a hard sphere gas model is given by p = 
po(T/To)' ', where po = 2.2695 x 10V5kg/msec and 
To = 3001i. In this paper, the freestream Knudsen 
number is defined by l in,  = X,/r, and A, is the 
mean free path and r is the radius of the cylinder. 

Figure 3 shows a schematic of computational domain 
and a set of 38 x 60 grids. Grid refinement studies have 
been performed. Two sets of grids with 76 x 120 (case 
A ) ,  and 152 x 240 (case B) grid points have been used 
to compute the case of ICn, = 0.2. The  computa- 
tional results show tha t  the stagnation point heating 
coefficient of case B is about 1.3% higher than tha t  of 
case A. Therefore, the grid size of case B is considered 
appropriate and all the results presented in this papers 
are performed by using the same grid size correspond- 
ing to the grids of case A .  

Computational Case 1: Kn, = 0.2 
Detailed DSMC results by Koura e t .  al. of the 

present test case are available for comparison. As 
pointed by KonraI2'I, these DSMC results are obtained 
by using a rectangular grid cells, hence it is difficult for 
the Monte Carlo method to calculate flow da ta  along 
the body surface. Consequently, the comparisons for 
flow parameters along body surface herein are only ap- 
proximate comparisons. 

Figures 4, 5 and 6 show the temperature, velocity 
and density distributions along the stagnation stream- 
line. The  results show tha t  the Burnett equations 
predict a thicker bow shock wave compared with the  
Navier-Stokes equations. In all three figures. the Bur- 
nett solutions agree better with the DSMC results than 
the Navier-Stokes equations do. Particularly, the tem- 
perature and the velocity distributions show more sig- 
nificant difference between the Burnett and  Navier- 
Stokes results. However, the density distribution dose 
not show much difference across the shock for the 
present case of Knudsen number 0.2. For the Burnett 
equations with first order slip boundary Conditions and 
with Schamberg slip conditions, the results are very 
close except near the wall surface. 

Figures 7, 8 and 9 show the  distributions along body 
surface of heat flux coefficient (c, = mj, normal 
pressure coefficient and shear stress coefficient, The  
differences between the Navier-Stokes solutions and 
Burnett solutions are not very large for the present 
case of Knudsen number 0.2. The  Burnett hcating flux 
coefficient and shear stress coefficient agree better with 

v 

- 

W 

DSMC results. However, all the continuum results un- 
der predict the normal pressure coefficient compared 
with the DSMC results. This discrepancy may be due 
to the inaccuracy of the DSMC results using a rectan- 
gular coarse grid cell on circular surface. 

The  flow-field tcmperature contours of the DSMC 
and Navier-Stokes results are compared in Figure 10, 
and the temperature contours of the  DSMC and Bur- 
nett l results are compared in Figure l l .  Similar com- 
parisons of flow-field density contours are shown in Fig- 
ures 12 and 13. All the contours show tha t  the Burnett 
solutions agree much better with the DSMC results 
than the Navier-Stokes solutions. 

The  result comparisons show tha t  the Burnett equa- 
tions with the first-order slip boundary conditions do 
improve the Navier-Stokes equations results in hyper- 
sonic flow past a cylinder when Kn, = 0.2. On the 
other hand, the Burnett solutions with the first order 
slip conditions are not very different from the Burnett 
solutions with Schamberg slip conditions. 

Flow Parameters vs. Knudsen N u m b e r s  
So far, we have computed the flow for five cases 

of different freestream Knudsen numbers: Iin, = 
0.02,0.1,0.2,0.3,0.4. The  flow conditions and geom- 
etry of all these test cases are the same except the free 
stream pressure and density corresponding t,o the vari- 
ation of Knudsen numbers. We examine the effect of 
translational nonequilibrium on the Navier-Stokes so- 
lutions and the Burnett solutions. Since we currently 
do not have DSMC results for these cases except Case 
1, the results of the Burnett solutions are compared 
with the Navier-Stokes solutions. 

Figures 14, 15, and 16 show variations of the  sur- 
face heat-flux coefficient, normal pressure coefficient, 
and temperature a t  the stagnation point with Knud- 
sen numbers Iin,. Figure 14 shows tha t  as the flow 
becomes more and more rarefied, the surface heating 
rate predicted by the Burnett equations with first order 
slip boundary conditions is lower than those predictcd 
by the Navier-Stokes equations. The  Burnett results 
seem to be in the right direction since the Navier-Stokes 
equations usually overpredict the stagnation heating 
rates["]. On the other hand, the Burnett equations 
with the Schamherg slip boundary conditions s ta r t  to 
increase rapidly as Knudsen number gets larger than 
0.2. The  results show tha t  Schamberg's second slip 
conditions may not be appropriate because they are 
not derived by using the Knudsen layer solutions. 

Figure 15 shows tha t  the Burnett 1 results predict 
lower normal pressure than those of the Navier-Stokes 
equations. Again, Burnett equations with the Scham- 
berg boundary Conditions (Burnett 2) do not seem to 
be correct. Figure 16 shows the temperature on the 
wall surface a t  the stagnation point predictcd by the  
Burnett 1 rcsults is very close to the Navier-Stokes re- 
sults because they use the same first slip boundary con- 



ditions. On the othcr hand ,  Burnett 2 results predicted 
much lower surface temperatures. I t  should be pointed 
out tha t  the surfacc temperature and thc velocity for 
the continuum equations are not the same as the actual 
YdlUCS on thc wall surface. 

Since the shear stress is zero at the stagnation point, 
figure 17 shows the shear stress coefficient on a fixed 
point on the h o d s  surface 145.6 deeree from the staK- 

adequate in that case. On the other hand ,  as the Knud- 
sen number increases, the Burnett solutions differ from 
the Navier-Stokes solutions. The  Burnett  equations 
with first order slip predict a thicker shock wave and  
lower stagnation heating rates than the  Navier-Stokes 
cquations do. W 

VI. Conclusions " - 
nation point) against the Knudsen number lin,. The  
results show tha t  the slicar stresses predicted by the 
Burnett 1 ,  Burnett 2 ,  and  the Navier-Stokes equations 
are not very different. Figure 18 shows the slip velocity 
on the surface at the same point. Since Burnett 1 and 
the Navier-Stokes equations use the same first order 
slip boundary conditions, the slip velocities of the two 
solutions are very close. T h e  Burnett 2 results, on the 
other hand, predict a much lower slip velocity (u. < 0 
when Kn, > 0.2) on the wall. 

These results show tha t  the Burnett 1 results seem 
to give improvement over the  Navier-Stokes equations, 
while the Burnett solutions with Schamherg second or- 
der slip conditions are not valid for Knudsen number 
larger than 0.2. 

Cases 2 and 3: Iin, = 0.02, 0.4 
Some of the results of case 2 and case 3 are presented 

as follows. 
Figures 19 and 20 are temperature distributions 

along the stagnation streamline for the Knudsen num- 
bers of 0.02 and 0.4 respectively, For case 2, where the 
Knudsen number, 0.02, is very small, the Burnett so- 
lutions agree well with the Navier-Stokes results as ex- 
pectcd. For case 3 ,  the Knudsen number 0.4 is not neg- 
ligihlely small, the Burnett equations predict thicker 
how shock than  the Navier-Stokes solutions do. On 
the other hand, the Burnett 2 results give much lower 
surface temperature than the Burnett 1 results. 

Figures 21 and 22 are heat coefficient distributions 
along the body surface for case 2 and 3 respectively. 
Again, the Burnett and  Navier-Stokes results agree well 
for case 2. For case 3, the Burnett 1 results predict 
lower heating rates on the surface than the Navier- 
Stokes equations, the Burnett 2 results predict slightly 
higher heating rates on the surface than thc Navier- 
Stokes equations, 

Finally, figures 23 and 24 show the temperature con- 
tours comparison between the Navier-Stokes and thc 
Burnett 1 results. T h e  Burnett 1 results of case 2 
agree very wcll with Navier-Stokes results except for 
a small area within the how shock. On the other hand, 
the Burnctt 1 results of case 3 predict a much thicker 
shock wave than the Navier-Stokes equations do. 

These results show tha t  when the Knudsen number 
is very small (about 0.02), the Burnett solutions agree 
very wcll with thc Navier-Stokcs equations. These re- 
sults also indicate tha t  the Navier-Stokes equations arc 

" 

'U 

A ncw method in formulating the  additional bound- 
ary conditions for the Burnett equations has bcen 
proposed. The  new method requires the  same num- 
ber of physical boundary conditions as the Navier- 
Stokes equations do, and the additional boundary con- 
ditions are obtained by using the Navier-Stokes equa- 
tions as thc leading approximation of the solutions on 
the boundary. This  treatment eliminates the  ambigu- 
ity of the boundary conditions used in our previous 
studies. The  results show tha t  the flow-field solutions 
of the Burnett equations can he uniquely obtained by 
using the present boundary conditions. 

The  Burnett solutions with the new boundary con- 
ditions have been oht,ained for hypersonic flow past 
a cylindcr. When the Knudsen number is very small 
(about 0.02), the Burnett solutions agree very well with 
the Navier-Stokes equations. For test cases with larger 
Knudsen numbers, the Burnett solutions obtained by 
using the first-order slip boundary conditions predict 
lower stagnation heating rates and a thicker how shock 
wave than the Navier-Stokes solutions. The  compari- 
son of the results shows tha t  the  Burnett solutions with 
first order slip conditions agree better with DSMC re- 
sults than the the Navier-Stokes solutions in the con- 
tinuum transition regime. 

On the other hand, the Burnett solutions obtained 
by using the Schamberg boundary conditions do not 
seem to he correct when the Knudsen number is larger 
than 0.2. Further studies are needed to derive appro- 
priate second order slip conditions for the  Burnett level 
of approximations. Still, the Burnett equations with 
the first order slip conditions are able to provide more 
realistic rcsults when the gas flow s ta r t s  to he in the  
continuum transition regime. 
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Figure 4: Temperature distribution along the 
stagnation streamline (Case 1: M ,  = 10.95, 
lin, = 0.2). 

Figure 1: A schematic of velocity distribution 
across the Knudsen layer and outer field near 
the wall. 
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Figure 2 
[,quation in Section I11 ( c  = 0 1). 
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Figure 5: Velocity distribution along the stagna- 
tion streamline (Case 1: M, = 10.95, Iin,  = 

xlr  

0.2). 
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Figure 6: Density distribution along the stagna- 
tion streamline (case 1: ivm = 10.95, [ inm = Figure 3 :  A schematic of the computational do- 

main with a s e t  of 38 x 60 grids. 0.2). 
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Figure 7. Heat-flux coefficient distribution along 
body surface (Case 1: M ,  = 10.95, lin, = 0.2). 
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Figure 8: Normal pressure coefficient (pn = p+un) 
distribution along body surface (Case 1: .\f, = 
10.95, 1<n, = 0.2). 
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Figure 9: Shear stress coefficient distribution 
along body surface (Case 1: M ,  = 10.95, I inm = 

~i~~~~ 11: Flow-field temperature ( T / T , )  con- 
tours comparison (case 1: ,$f, = 10.95, (in, = 

0.2). 0.2). 
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Figure 14. Variation of surface heat-flux coef- 
ficient at  the stagnation point with Knudsen 
number for cylinder. 

DSMC 

Figure 12: Flow-field density ( p l p , )  contours 
comparison (Case 1: M ,  = 10.95, I<n, = 0.2). 
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Figure 15:  Variation of normal pressure conf- 
ficient at  the stagnation point with Knudsen 
number for cylinder. 
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Figure 16: Variation of surface gas temperature 
at  the stagnation point with Knudsen number 
for cvlinder. 

Figure 13: Flow-field density (p ip , )  contours 
comparison (Case 1: M ,  = 10.95, [in, = 0.2). 
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Figure 17: Variation of shear stress coefficient at 
a fixed point on the body surface (45.6' from the 

Figure 20: Tcmpnrature distribution along stag- 
nation streamline (Case 3: M ,  = 10.95, Iin, = 

stagnation point) with Knudsen numbers. 0.4). 
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Figure 18: Variation of slip velocity at a fixed Figure 21: Heat-flux coefficient distribution 
point on the body surface (15.6O from the stag- along body surface (Case 2: M ,  = 10.95, lin, = 
nation point) with Knudsen number. 0.02). 

Figure 19: Tcmperature distribution along Stag- Figure 22: Heat-flux coefficient distribution 
nation streamline (Case 2: M ,  = 10.95, lin, = along body surface (Case 3: M, = 10.95, Iin- = 
0.02). 0.4). 
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Figure 23: Temperature (TIT,) contours com- 
parison for the case of M ,  = 10.95, and Tin, = 
0.02. 

Navier-Stokes 
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Figure 21: Tctmperature (TIT,) contours com- 
parison for the case of M ,  = 10.95, and l i n m  = 
0.4. 
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