
AlAA 93-1318 
Hypersonic Flutter of a 
Curved Shallow Panel 
with Aerodynamic Heating 
T. Bein, P. Friedmann, X. Zhong, and 1. Nydick 
Mechanical, Aerospace and 
Nuclear Engineering Department 
University of California 
Los Angeles, CA 

34th 
AI AA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics and 
Materials Conference 

AI ANAS ME 
Adaptive Structures Forum 

April 19-22, 1993 / La Jolla, CA 
- permlsslon to copy or republish, contact the Amerlcan Institute of Aeronaullcs and Astronautlcs 
370 L'Enfant Promenade, S.W., Washlngton, D.C. 20024 

. 



HYPERSONIC FLUTTER OF A CURVED SHALLOW PANEL WITH AERODYNAMIC HEATING 

T. Bein', P. Friedmann', X. Zhong' and I. Nydick" 
Mechanical, Aerospace and Nuclear Engineering Department 

University of California 
Los Angeles, California 90024-1597 

Abstract - 
The general equations describing the nonlinear 

fluttering oscillations of shallow, curved, heated 
orthotropic panels have been derived. The formulation 
takes into account the location of the panel on the surface 
of a generic hypersonic vehicle, when calculating the 
aerodynamic loads. It is also shown that third order 
piston theory produces unsteady aerodynamic loading 
which is in close agreement with that based upon direct 
solution of the Euler equations. Results, for simply 
supported panels. are obtained using Galerkin's method 
combined with direct numerical integration in time to 
compute stable limit cycle amplitudes. These results 
illustrate the sensitivity of the aeroelastic behavior to the 
unsteady aerodynamic assumptions, temperature, 
orthowpicity and flow orientation. - 

Nomenclature 

plate length 
speed of sound 
prescribed amplitude of panel motion 
plate width 
pressure coefficient 
plate stiffness in the x and y directions. 
respectively 
energy per unit volume 
modulus of elasticity in the x and y directions, 
respectively 

VNL] right hand side of equations of motion, including 
all nonlinear terms 

F Airy stress function 
Fh,Fp homogeneous and particular parts of F 
F quantity used in Euler equations 
G, shearmodulus 
G quantity used in Euler equations 
h plate thickness 
H height or maximum thickness of vehicle 
i,k,n.r indices associated with mode shapes in x- 

direction 
j.P,m.s indices associated with mode shapes in the y- 

direction 
k spring stiffness 
K, nondimensional frequency 
K hypersonic similarity parameter 
L maximum length of vehicle 
L[ ] differential operator, representing equation of 

motion 
M Machnumber 
M : . q  thermal moment intensity resultants 
I'Q~ thermal stress intensity resultants 
N,&, number of modes in x and y directions, 

P pressure 
AP P - P -  
qA 
R gas constant 
R, 

- 

- 

respectively 

aerodynamic loading on the panel 

representative radius of curvature for vehicle 
surface 
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time 
temperatwe distribution on the plate 
critical temperature for panel buckling 
generalized c ~ d i n a t e  of panel motion 
velocity components 
quantity used in the Euler equations 
velocity 
panel deflection 
coordinates for panel 
coordinates for vehicle surface 
state variable vector 
initial curvature of panel 
Fourier coefficients of initial curvature 

Greek Symbols 

4% 

a 

coefficient of thermal expansion in x and y 
diI€ZtiOIlS 

flow orientation angle with respect to x-axis 

B 6 
Y ratio of specific heats 
& structural damping 
t p , ~ , & # r a i n  components 
Ob 

K,~,~curvatures  
h nondimensional dynamic pressure parameter 
h,, critical value of h at which linear system 

P 3 1 - v,v, 
V panel mass ratio 

vwvF 
5.q 

P free stream air density 
p, panel density 
7 non-dimensional time 
o panel frequency 

flow deflection angle, semiangle representative of 
body surface 

becomes unstable 

- 
Poisson's ratio in x and y direction 
non-dimensional coordinates in the x and y 
directions 

Special Symbols 

(') 
( )- 

( ),, 
( )1 

derivative with respect to time 
value at undisturbed flow 
value on the surface of piston 
value behind the shock 

( )' 
( - ) nondimensional quantities 

value on the middle surface 

u 1. Introduction and Problem Statement 

Renewed interest in the design of hypersonic vehicles 
motivated by the National Aerospace Plane (NASP) has 
generated a substantial number of new studies dealing 
with the aeroelastic, aerothermoelastic, and 
aeroservoelastic behavior of a generic vehicle resembling 
a potential NASP configuration'". Due to the preliminary 
nature of the studies, they have been based on a number 
of simplifying assumptions, the most restrictive of these 
being the use of linear piston theory for calculating the 
aerodynamic loads, and neglect of the derails of the heat 
transfer process between the flow and the vehicle. 

Other studies have restricted themselves to the 
treatment of a structural element representing the ski of 
a NASP-type vehicle, and conducted a variety of 
hypersonic panel flutter studies for isotropic and 
composite panels of hypersonic speedsb''. Again, the 
unsteady loads in these analyses were based upon piston 
theory, and it is implicitly assumed that a panel in 
hypersonic flow is, indeed, representative of the 
conditions encountered by a structural element located on 
the surface of a generic NASP vehicle. Another 
interesting approach, pursued in Ref. 11, was based on 
obtaining the aerodynamic loads by assuming free- 
molecule flow. This condition corresponds to what may 
be encountered on the leeward portion of the hypersonic 
vehicle travelling at high altitudes. It was shown'' that 
such aerodynamic shear effects can have some 
importance on the nonlinear aeroelastic behavior. 

While the isolated panel flutter problem in hypersonic 
flow is significant, the problem becomes more 
complicated when some additional considerations. 
representative of the actual conditions present on the 
surface of a generic hypersonic vehicle, are taken into 
account. A generic hypersonic vehicle is shown in Fig. 
1. It will generally consist of a curved surface, thus the 
panel will have initial curvature, and its location on the 
surface of the vehicle may have considerable influence on 
the aerodynamic loads to which h e  panel is exposed. 
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The temperature diseibution over the vehicle, and the 
heat -fer between the skin and the surrounding fluid 
could also influence the aeroelastic behavior. The 
direction of the flow will rarely coincide with the edges 
of the panel. Funhennore, the difficulties associated with 
the wind tunnel testing of hypersonic vehicles imply that, 
for a better representation of the unsteady aerodynamic 
loads acting on the surface of such a vehicle, 
computational fluid dynamics (CFD) wiU have to be 
used. Therefore, it is interesting to examine to what 
extent the unsteady aerodynamic loads obtained from 
CFD methods, differ from the approximate loads obtained 
from piston theory. 

- 

The present paper is an exploratory study in which 
some of the questions raised above are studied. In this 
study we take advantage of the large number of papers 
which have been generated on panel flutter from the late 
50's to the mid 70's. Without auempting to present a 
complete review of previous work on panel flutter, a few 
relevant previous studies are briefly mentioned below. 

Most early work on panel flutter was restricted to 
supersonic speeds (1.5 < M c 3.0). A complete 
discussion of the fundamental aspects of panel flutter was 
given by Dugundji" using a linear, isotropic plate theory - and a linear aerodynamic theory. At the same time the 
effect of temperature distribution on panel flutter was also 
considered". It was also recognized that geometrical 
nonlinearities. due to moderate panel deflections, can play 
an important role in panel flutter. This led to a number 
of studies which emphasized the geometrically nonlinear 
aspects of panel flutter using a moderate deflection type 
of plate theory such as von Karman plate theory 
combined with fmt order piston theory for generating the 
unsteady aerodynamic loads1c19. These studies showed 
that when geomeeical nonlinearities are included, the 
linear stability boundary can be exceeded and the panel 
develops, in most cases. stable limit cycle oscillations 
with amplitudes having an order of magnitude equal to 
the thickness of the panel. A comprehensive review of 
panel flutter problems is available in a monograph written 
by Dowell". 

The objectives of this paper are: (a) to formulate the 

moderate deflection orthotropic, curved, panel flutter 
problem in hypersonic flow; (b) determine the accuracy 
of the unsteady aerodynamic loading based on piston 
theory by comparing it to results obtained from solution 
of the Euler equations for the hypersonic Mach numbers 
considered: and (c) to determine the influence of 
temperature, onhotropicity, panel location, orientation. 
and curvature on the aeroelastic behavior. 

The numerical results presented illustrate panel 
behavior by presenting the sensitivity of the limit cycle 
amplitudes, to the parameters listed above. 

2. Formulation of the Problem 

The geometry of the problem is depicted in Fig. 2. It 
is assumed that the panel is built of an onhotropic 
material characterized by four elastic consfants E,, E,, vV 
and v,, and thermal expansion coefficients q, a,, where 
the thermal expansion coefficient in the xy direction is 
assumed to be zero for the onhotropic case. The panel 
is loaded by transverse loading and is subject to a 
temperature change from the initial stress free state. 

Nonlinear panel flutter studies were frequently based on 
moderate deflection nonlinear plate theories such as the 
von Karman plate theory. In this study a further 
refinement is introduced by adopting Marguerre plate 
theorym" which can also account for the initial 
curvatures of the panel. Margueme theory was initially 
presented for the isotropic case in Ref. 20, and 
summaries of the theory can also be found in Ref. 21. 
The initial curvature of the panel, which is assumed to be 
shallow is defined by Z(x,yj. The other aspects of this 
theory are similar to von Karman type of thin plate 
theory. The extension of the theory from the isotropic 
case of the onhotropic case, carried out here, is fairly 
straightforward and the details of the derivation will be 
omitted for the sake of brevity. 

The middle surface strains and curvatures for this 
theory are given by 
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- a v o  + au0 + aw aw + az my + az aw 
“ - a ; .  T w ZT 77-z 

and 

(3) 

as, = K = - 2  
9 

and the stress-saain relations are given by 

(4) E V E V 
ff = LE + L E  E - 2 a y T - 2 E y a z T  

P n  P ’ ”  P P 
u9 = G“E9 

With these assumptions the equations of motion for the 
orthotropic panel can be written in the following manner. 

where F in %. (4) is the Airy stress function, given by 

aw: - a”,’ -- -- = -  
EJ ay’ Eyh ax’ 

where the following definitions have been used. 

“,Ey = vyJ, and p = 1 -v9vyx 

The thermal stress and moment intensity re~ultanrs are 
given by 

h 
N , ’ =  7 j ( :ay+v9:ax]  T d z  

h 
7 

(9) 

The boundary conditions associated with this problem are 
those corresponding to a simply supported plate along its 
four edges. 
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It should also be noted that the Marguerre equations for 
a shallow curved panel are appropriate when the criterion 
for shallowness is defined as (hlR,) c 0.02, where R, is 
a representative radius of curvature. 

2.1 Aerodynamic Loads 

Hypersonic flow, which usually implies Mach numbers 
above 5 is subsrantially different from subsonic or 
supersonic flow. Depending on the precise conditions, 
high temperature effects, viscosity and even a chemically 
reacting boundary layer can be imponant. In fact, for 
many steady or unsteady hypersonic flow problems. 
analytical solutions are not available in the literature? 

The exploratory nature of this study justifies the 
assumption of inviscid, continuum hypersonic flow over 
a slender body. In this case the shock wave lies close to 
the body and the shock angle is small, in such cases the 
hypersonic flow can be approximated by the hypersonic 
equivalence principle (Ref. 22, pp. 118). Combining it 
with strip theory for slender bodies with elliptical cross- 
sections allows one to approximate the pressure on the 
surface of the body (or panel) by the pressure distribution 
on an unsteady. one dimensional piston given by 

where vp is the velocity of the piston, while pI and al are 
the pressure and sound velocity at the beginning of 
motionu. 

Equation (10) is equivalent to piston theory", except 
that in the case of hypersonic flow over a slender body, 
p1 and aI are the values behind the shock. These values 
can be evaluated by using oblique shock relations, which 
utilize the hypersonic similarity parameter, K. defined asz 
K = M-8,. where 8, is a flow deflection angle, which can 
also be related to the semi-angle of the body. The 
oblique shock relations can be wriuen as 

r 1 

where 

- a1 ;j..- (13) 
a- P, PI 

The velocity, vp is a superposition of the velocity due to 
the changing body shape and the velocity due to the 
motion of the panel. 

az + aw + aw 

I , (14) 
VP =q;. .;) Ti 

= a_M, 

The velocity of the piston is limited, namely vp can not 
exceed the sp%d of sound. 

Using Eqs. (10) and (14) the pressure distribution can 
be expanded using the binomial theorem. It is common 
practice in the process to retain terms up to the third 
order, which implies a nonlinear piston theory. It is 
convenient to rewrite Eq. (10) as 

r 
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2.2 Temuerature Distribution 

The aerodynamic model used in this study is based on 
the assumption that there. is no interaction between the 
flow and the panel temperature and the vehicle is flying 
at constant speed. Funhermore the use. of a thin plate 
theory implies that it is reasonable to aSsume a uniform 
temperature distribution through the thickness of the 
plate. While in the formulation of the problem provision 
for inwducing a general temperature distribution T(x,y) 
exists, the actual results are computed for a uniform 
temperature distribution. For an isotropic plate, simply 
supported and uniformly heated (Le. loaded in both 
directions) the critical temperature, which produces 
buckling is given by" 

2.3 Mathematical Representation of the Vehicle Surface 

To study in a convenient manner the influence of panel 
location, on the surface of the vehicle, on its fluuer 
characteristics a mathematical representation of the lifting 
bcdy associated with a generic hypersonic vehicle is 
needed. An analytical expression which approximates 
such a configuration is a hyperboloid of two sheets, 
described by 

Equation (16) represents a hyperboloid shifted on the 
x-axis such that the vertex of the right surface is located 
at the origin. The parameters c1. c,, c, are selected so as 
to resemble the dimensions of the NASP (considered as 
a generic hypersonic vehicle) 

height = 1 width 1 
length 4 width 3 

- -  -e- 

which yields 

cl = 0.5LTc; c, = 0.5Ly,yc; c, = Ly,'jj6 

where yc = (1/64 2 - 1) 

where y, may be adjusted to change the curvature of the 
surface. This surface satisfies the shallowness conditions, 
stated earlier, at most locations on the surface of the 
vehicle except the nose region. 

L/ /  

Using the equation of the surface, Eq. (17). a 
coordinate transformation can be obtained which relates 
the global bcdy coordinates, 2, j ,  and i. to the 
components of a position vector (re ry, r,) which 
identifies the location of the panel comer, and the x,  y 
local coordinates of the panel. Using these relations the 
equation of the shallow curved initially undeformed shape 
of the panel can be represented by 

where the quantities, 4, &, & are complicated functions 
of i ,  j ,  i, el, c,, cg and r, ry, and r,. For the sake of 
brevity, these fairly long expressions are not given here. 

u' In the actual equations of motion the initial shape of 
the curved panel is represented by 

where the Fourier coefficients are given by 

which is consistent with the boundary conditions of a 
simply supported panel. 

3. Method of Solution 

The equations of motion are solved by using Galerkin's 
method to eliminate the spatial dependence in the 
problem, and subsequently, the resulting ordinary 
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differential equation are integrated directly in the time 
domain". 

The approximate solution is represented by 
N N  

w(xy,t) = TmsinT ' - sinT . mny (21) 
u 1.1 m-1 

which satisfies the boundary conditions of a simply 
supported panel. 

The solution consists of two pans, finding a solution 
for the Airy smss function F k y )  and then applying 
Galerkin's method to obtain a set of nonlinear ordinary 
differential equations. 

The Airy stress function has to satisfy Eq. (6). The 
solution consists of a homogeneous part F,, and a 
panicular part F,. The homogeneous solution satisfies 
Eq. (6) when all the terms not related to F are deleted 

which is satisfied by assuming a solution in the form 

(23) 1 
2 

Fk(X,Y) = - (C,X' + cg2 + C&y) 

The coefficients C,, C, and C, can be obtained by using 
the in-plane boundary conditions, which imply no shear 
and zero displacements at the boundaries". 

After a considerable amount of algebra one obtains 

E h  

P 
. TM(Tm + 2ZJ - -f- (a, + vvax)AT 

(24) c, = 0 

The mathematical details required for the particular 
solution are quite lengthy and will not be presented here. 
However, an outline of this solution can be found in Ref. 
18. 

Next, the solution for the stress function F and the 
assumed solution, Eq. (20) are substituted into the 
differential equation of motion, Eq. (5) and the 
aerodynamic loading term Eq. (13, this procedure leads 
to lengthy expressions due to the retention of the third 
order terms in the piston theory and presence of the 
temperature dependent loads. At this stage a number of 
nondimensional definitions are introduced to facilitate the 
treatment of these equations. The nondimensional 
quantities are listed below 

Y .  - w .  
b w=77 i ; '  11 = - ,  

Next Galerkin's method is applied on the resulting 
mathematical expressions. This procedure can be 
symbolically written as 

for s = 1, N, r = 1 .N, 

where N, and N, represent the number of modes 
selected in the x and y direction respectively. Since the 
flow on the surface of the panel is lined up with the x- 
direction, the number of modes used in this direction is 
&en to be four, i.e., N, = 4. Previous research 
indicated that six modes in the flow direction produce 
converged solutions, however four modes provide good 
accuracy for an exploratory study. such as conducted in 
this paper. To be able to account for panel orthotropicity 
two modes were used in the y direction, Le., N, = 2. 



Thus, the structural dynamic problem is represented by a 
total of 8 modes. 

Carrying out the detailed algebraic operations required 
for the implementation of &. (26) involve a large 
amount of algebra and results in lengthy algebraic 
expressions, due to the retention of the higher order terms 
in the piston theory. These steps are not presented here 
due to their excessive length. However, it should be 
noted that a detailed description of the steps involved is 
available in Ref. 18. 

The resulting equations are transformed into first order 
form, which can be written symbolically as 

where 

Equations (27) represent a system of nonlinear ordinary 
differential equations which are. solved by direct 
numerical integration. In this study an available 
computer program based on the A d a m  PECE formulas=. 
was used. 

4. Alternative Representation of the Aerodwamic Load 

In the discussion of the unsteady aerodynamic load we 
pointed out that piston theory can be viewed only as an 
approximation for the unsteady aerodynamic load. Using 
an exact numerical solution to the Euler equations can be 
viewed as a potentially better approximation, and one 
might be tempted to base aeroelastic studies in hypersonic 
flow, on such a solution. 

F ~ n ~ ~ t e l y .  for the case of panel flutter, a relatively 
simple calculation can be carried out 80 resolve this 
question. One can pick a simple two dimensional 
problem, in which both the motion and the deformed 
shape of the panel are p r e s c n i  and given by 

For this case Eq. (IS) C & I  be'usedto write a pressure 
coefficient in nondimensional form, given by 

0 

f -  Y 

and 

where the following nondimensional quantities have been 
used in Eqs. (29) and (30) 

& = p - p , ;  p={% 
(31) 

In addition to calculating the unsteady pressure 
coefficient from Eq. (32), the pressure coefficient was 
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also obtained from the direct numerical solution of the 
Euler equations as described next 

The two-dimensional unsteady Euler equations are 
solved in a 66x 38 Cartesian grid which is fixed during - the computations. In the Cartesian coordinates, the Euler 
equations can be written in the following conservation- 
law form: 

ar7+ aF+ a5 (33) TaYT 
- 

where U = [p, pu, pv, e l ,  and 

In the equations above, p. u, v. p .  T, and e denote 
density, velocity components in x and y directions, 
pressure, temperature, and total energy per unit volume 
(e = p / (y  - 1) + p(u2 + .3n, respectively. The gas is 
assumed to be perfect gas with y = 1.4 and gas constant 
R = 287.04 Nm/kg°K. 

The numerical method used for solving the 
conservation equations are the essentially nonoscillatory 
@NO) scheme?. The EN0 schemes were originally 
developed for computing high-speed flows with shock 
waves with high order accurate nonoscillatory solutions. 
Compared with other high resolution upwind schemes 
which are usually not uniformly high order accurate. the 
EN0 schemes can achieve nonoscillatory solutions with 
uniformly high order accuracy in space and in time. 
Therefore, the EN0 schemes are particularly suitable for 
computing loads for dynamic cases such as the flutter 
problem where high frequency transient flow fields exist. 
The EN0 schemes have been applied to compressible 
viscous flow in an previous papep and the same 
computer code is used here to solve the Euler equations 
for the moving panel problem. 

The main features of the numerical method used in the 
present computations are as follows. The conservation 
equations are solved by using the finite volume method 
with second order EN0 schemes. The EN0 reconsWuc- 

tion is based on two-dimensional primitive functions Of 

the conservation variables and numerical flux vectors are 
computed by using the Roe approximate RiemaM Solver. 
The time stepping scheme is the explicit TVD Runge- 
Kutta scheme with the order of accuracy in time being 
consistent with the order of accuracy in space. The 
details of the numerical methods used in the code can be 
found in Ref. 26. 

The boundary conditions for the flow variables in the 
supersonic free stream are specified to the given values: 
the boundary conditions in the outnow boundaries are 
computed by using linear extrapolation from the interior 
of the flow field. Since the amplitude of the oscillation 
of the panel is very small compared with the length of 
the panel (1:225). the computational boundary at lower 
surface is fixed at y = 0, instead of moving with the 
panel, and the velocity boundary conditions at the wall 
surface y = 0 are specified 9s: 

(35) 

where y = y(x,f)  is the prescribed oscillation of the panel 
surface. The present approximate boundary treatment on 
the wall surface is suitablc only for small amplitude 
oscillation. In the case of large amplitude motion, the 
grids can no longer be fixed and have to move with the 
wall. 

The computational results in this paper are obtained by 
an explicit second order accurate EN0 scheme in both 
space and in time. A CFL number of 0.5 is used for the 
time accurate computations. The other parameters used 
in the computations are listed below. 

Mach Number M, = 10.05 

Temperature T- = 223.16(K) 

Pressure 

Surface Function 

A = 0.002m n = 2  

w = 1 . 2 0 6 ~  103rud/sec L = 0.45m 

p ,  = 264 1.6 (Nlm? 

y = A sin E sinwt 
L 

The panel properties which are also relevant to these 
calculations are also given below: 
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E = 69x 1V N/m'; v = 0.33 (material aluminum) ; 

h = 0.002 m ;  a = 0.45 rn;  po = 2 . 7 7 ~  lo-' Kglrn' 

D = 51.62 N.m; K, = 80; y = 1.4; p = 10 

V = 0.03351; h = 659.42 

Figures 4 and 5 depict a comparison of the pressure 
coefficient, obtained from piston theory and from the 
solution of the Euler equations plotted as a function of 
the nondimensional time. Figure 4 depicts cp as a 
function of time at 5 = 0.40 and Fig. 5 presents the Same 
information at 5 = 0.85. It is clear from these figures 
that the principal difference is between first order and 
second order piston theory. The results of the second 
order and thud order piston theory (which are very close) 
are also in close agreement with the result obtained from 
the solution of the Euler equations for this parlicular 
Mach number and prescribed panel motion. 

These results indicate that a similar comparison with 
the results obtained from the solution of the Navier- 
Stokes equations for the same test case, would be a 
useful endeavor. 

5. Results and Discussion 

The results obtained in this study are usually presented 
in the form of stable limit cycle amplitudes evaluated for 
values of the dynamic pressure parameter h > h<,; where 
h,, is the critical value at which the linear panel fluuer 
problem becomes unstable. The parameters which have 
been used in the calculation are given in Table. 1. The 
structural damping, E = 0, for all the calculations 
perfOIlIled. 

A typical limit cycle is shown in Fig. 6. Careful 
numerical tests were done for selecting the correct 
stepsize A7 at which converged limit cycles are obtained. 
All the results presented in this section were obtained for 
flat panels. 

As indicated in the previous section, the primary 
difference in pressure coefficients between linear, or first 

order piston theory, and higher order theories is due to 
the second order terms. The results presented in Fig. 7 
show the influence of various orders of piston theory on 
the stability boundary and limit cycle amplitudes of 
isotropic panels. All the calculations are carried out with 
four modes in the streamwise direction, and two modes 
in the direction perpendicular to the flow direction. The 
limit cycles are evaluated at 5 = 0.75 and q = 0.50: 
between five to six values of h > h,, are used to generate 
a typical limit cycle amplitude plot as a function of h. It 
is evident from the figure that the differences in limit 
cycle amplitudes are similar to the differences in pressure 
coefficients when one increases the order of piston 
theory. Figure 8 illustrates the behavior of the 
onhotropic panel, which for this case, resembles closely 
its isotropic counterpart. All subsequent results presented 
in this section were calculated for piston theory with third 
order terms included. 

il 

The influence of aerodynamic heating is considered 
next. A uniform temperature is imposed on the panel. 
For the isotropic case it is assumed that the panel is made 
of aluminum, with ax = 1 . 2 ~  lO-'/'F. Figure 9 shows the 
limit cycle amplitudes for three uniform temperature 
distributions T = 5'F. T = IO'F, and T = 15°F. imposed 
on the panel. It is evident that aerodynamic heating 
reduces h,, significantly and it also increases the limit 
cycle amplitudes. For the particular combination of panel 
geometry, material and boundary conditions increasing 
the temperature by 5'F from the initial stress free state 
reduces the critical dynamic pressure by 20% and leads 
to substantial increases in limit cycle amplitudes. 

u' 

The influence of the temperature on the onhotropic 
panel is depicted in Fig. 10. For this case it is assumed 
that the panel is a graphite/epoxy orthotropic platex, with 
n/s = 0.001 and 4 = 2.1 x 10"/OF. The effect is 
somewhat more pronounced, than in the isotropic case, 
because the reduction in stiffness of the heated 
onhotropic panel exceeds that present in the isotropic 
case. These results clearly indicate the importance of 
carrying out a combined aeroelastic and heat transfer 
analysis where the Iemperature (equilibrium or time 
varying) is accurately obtained from the solution of the 
heat transfer problem. 
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Preliminary dculations, for which results are not 
presented here, were also done to determine the effects of 
nonuniform temperature in the x and y direction, on panel 
flutter. It appears that the correct value of the 
temperature, when assumed to be uniform over the area 
of the plate, is more important that its precise disnibution 
in the x and y directions. 

The shape of the hypersonic lifting body, and a 
representative panel, are schematically illustrated in Fig. 
3. For such a configuration, variation in the hypersonic 
similarity parameter can be significant. Three values of 
the hypersonic similarity parameter, discussed in the 
aerodynamic loads sectim were considered: K = 1; K = 
1.25 and K = 1.5 which correspond to a vehicle flying at 
M, = 10 and having semiangles (of inclination or flow 
deflection) corresponding to 8, = 5.7': 8, = 7.2O and 8, 
= 8.6'. The results are shown in Fig. 11. It is evident 
from the figure that this effect, associated with the 
presence of shock waves influences both he, as well as 
the magnitude of the limit cycle amplitude. 

Finally, it is important to note that another flow related 
effect, which can have an influence similar to the 
hypersonic similarity parameter, is the flow orientation 
(or direction) which was studied in detail, in the context 
of conventional panel flutter in Ref. 18. This effect is 
due to the fact that the x and y directions which represent 
the edges of the panel will not. in practical cases, 
coincide with the flow direction. In the current study it 
was assumed that the flow is in the xdirection. In 
general, however, the flow will have an orientation angle 
a relative to the X-direCtion. For this case, Eq. (14) will 
have to be modified 

cosa +( + Jw]sina] 3 5  

which leads to coupling of the panel vibrations in the x 
and y directions". Figure 12, taken from 18, shows the 
effcz of nonlinearity on the dynamic pressure ratio 
(h,d(L)& for two different isotropic panels. For alb = 

1.0, no difference is evident between (h)J(L)@ for (wlh) 

= 0.80 and (h,,)J(LJd on the scale of the figure. For 
(alb) = 2.0 nonlinearity slightly increase the effect of 
flow direction on the dynamic pressure ratio. For (alb) 
= 0.50 the effect is much more substantial, and it is due 
to a combination of nonlinearity and aerodynamic 
damping. 

6. Concluding Remarks 

In this paper Marguerre shallow curved plate theory has 
been extended to the orthotropic case and used to study 
the hypersonic nonlinear flutter of panels undergoing 
moderare deflections. 

It was found that for high Mach numbers the unsteady 
solution of the Euler equations using computational fluid 
mechanics gives virtually identical pressure distributions 
to that obtained from nonlinear third order piston theory. 

The difference in limit cycle amplitudes obtained with 
linear and thud order piston theory is of the order of 5- 
7%. It was also found that aerodynamic heating has a 
strong influence both on the critical dynamic pressure 
parameter h,, as well as on the amplitudes of the panel 
limit cycles. This suggests that the heat transfer problem 
governing the panel temperature should be solved 
together with the aeroelastic problem. Orthouopic panel 
construction can be more sensitive to temperature effects. 

The hypersonic similarity parameter, panel location on 
the surface of a hypersonic lifting body, and relative 
orientation between the flow direction and the edges of 
the panel are important parameters which can 
significantly influence the aeroelastic behavior of 
structural elements constituting the skin of a generic 
hypersonic vehicle. 
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Vehicle Body. 

Schematic Representation of Hypersonic 
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Figure 4: Pressure Coefficient vs. Time, Two- 
dimensional Panel, Comparison of Euler Solutions with 
Piston Theory; 5 = 0.40. 

Figure 2: Definition of Panel Geomeay. 
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, Figure 5: Pressure Coefficient vs. Time, Two- 
dimensional Panel, Comparison of Euler Solution with 
Piston Theory: 5 = 0.85. 
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Figure 6: Typical Limit Cycle Oscillation (h = 650). 
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Figure ?Influence of Various Orders of Piston Theory 
for Isorropic Panel. 
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Figure 8 Influence of Various Order of Piston Theory 
for Orthornpic Panel. 
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Figure 9: Influence of Uniform Temperature 
Distribution on Isotropic Panel. 
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Figure 11: Influence of Hypersonic Similiarity 
Parameter, K, (shock wave) on stability of onhornpic 
panel. 
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Figure 10 Influence of Uniform Temperature Figure 1 2  Effect of Flow Orientation on A,, and Limit 
Distribution on Orthrornpic Panel. Cycle Flutter Amplitude for Various Aspect Ratio Panels, 

from Ref. 18. 
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