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Abstract

The general equations describing the nonlinear
fluttering oscillations of shallow, curved, heated
orthotropic panels have been derived. The formulation
takes into account the location of the panel on the surface
of a generic hypersonic vehicle, when calculating the
acrodynamic loads. It is also shown that third order
piston theory produces unsteady aerodynamic loading
which is in close agreement with that based upon direct
solution of the Euler equations. Results, for simply
supported panels, are obtained using Galerkin’s method
combined with direct numerical iniegration in time to
compute stable limit cycle amplitudes. These results
illustrate the sensitivity of the aeroclastic behavior to the
unsteady  aerodynamic  assumptions, temperature,
orthotropicity and flow orientation.

Nomenclature

a plate length
a, speed of sound

A prescribed amplitude of panel motion

b plate width

c, pressure coefficient

DD, plaie stiffness in the x and y directions,
respectively

€ energy per unit volume

E.E, modulus of elasticity in the x and y directions,
respectively
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right hand side of equations of motion, including
all nonlinear terms

Airy stress function

homogeneous and particular parts of F

quantity used in Euler equations

shear modulus

quantity used in Euler equations

plate thickness

height or maximum thickness of vehicle
indices associated with -mode shapes in x-
direction

indices associated with mode shapes in the y-
direction

spring stiffness

nondimensional frequency

hypersonic similarity parameter

maximum length of vehicle

differential operator, representing equation of
motion

Mach number

thermal moment intensity resuliants

thermal stress intensity resultants

number of modes in x and y directions,
respectively

pressure

p-p.

aerodynamic loading on the panel

gas constant

representative radius of curvature for vehicle
surface
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t time

T temperature distribution on the plate
T, critical temperature for panel buckling
Tem generalized coordinate of panel motion
uv velocity components

U quantity used in the Euler equations

|4 velocity

w panel deflection

xyz  coordinates for panel

%£¥Z  coordinates for vehicle surface
¥; stale variable vector

z initial curvature of panel

Zum Fourier coefficients of initial curvature

Greek Symbols

o0, coefficient of thermal expansion in x and y
directions

o flow orientation angle with respect to x-axis

B yMi-1

¥ ratio of specific heats

£ structural damping

E.mEy,.E,Strain components

0, flow deflection angle, semiangle representative of
body surface

KooKy, K curvatures

A nondimensional dynamiic pressure parameter

Aer critical value of A at which linear system
becomes unstable

n 31-vv,

v panel mass ratio

v, V,, Poisson’s ratio in x and y direction
En non-dimensional coordinates in the x and y

directions
P free stream air density
o, panel density
T non-dimensional time
panel frequency
Special Symbols
) derivative with respect to time

(). value at undisturbed flow
() value on the surface of piston
() value behind the shock

(¥ value on the middle surface
(7) nondimensional guantities

1. Introduction and Problem Statement

Renewed interest in the design of hypersonic vehicles
motivated by the National Aerospace Planc (NASP) has
generated a substantial number of new studies dealing
with the aeroelastic, aerothermoelastic, and
aeroservoelastic behavior of a generic vehicle resembling
a potential NASP configuration', Due to the preliminary
nature of the studies, they have been based on a number
of simplifying assumptions, the most restrictive of these
being the use of lincar piston theory for calculating the
aerodynamic Joads, and neglect of the details of the heat
transfer process between the flow and the vehicle,

Other studies have restricted themselves to the
treatment of a structural element representing the skin of
a NASP-type vehicle, and conducted a wvariety of
hypersonic panel flutter studies for isotropic and
composite panels of hypersonic speeds®'®. Again, the
unsteady loads in these analyses were based upon piston
theory, and it is implicitly assumed that a2 panel in
hypersonic flow 1is, indeed, representative of the
conditions encountered by a structuoral element located on
the surface of a generic NASP vehicle. Another
interesting approach, pursued in Ref, 11, was based on
obtaining the aerodynamic loads by assuming free-
moiecule flow, This condition corresponds to what may
be encountered on the leeward portion of the hypersonic
vehicle travelling at high altitudes. It was shown!! that
such aerodynamic shear effects can have some
importance on the nonlinear aeroelastic behavior.

While the isolated panel flutter problem in hypersonic
flow is significant, the problem becomes more
complicated when some additional considerations,
representative of the actual conditions present on the
surface of a generic hypersonic vehicle, are taken into
account. A generic hypersonic vehicle is shown in Fig.
1. It will generally consist of a curved surface, thus the
panel will have initial curvature, and its location on the
surface of the vehicle may have considerable influence on
the aerodynamic ioads to which the panel is exposed.
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The temperature distribution over the vehicle, and the
heat transfer between the skin and the surrounding fluid
could also influence the aeroelastic behavior. The
direction of the flow will rarely coincide with the edges
of the panel. Furthermore, the difficulties associated with
the wind tunnel testing of hypersonic vehicles imply that,
for a better representation of the unsteady aerodynamic
loads acting on the surface of such 'a wvehicle,
computational fluid dynamics (CFD} will have to be
used. Therefore, it is interesting to examine to what
extent the unsteady aerodynamic loads obtained from
CFD methods, differ from the approximate loads obtained
from piston theory.

The present paper is an exploratory study in which
some of the questions raised above are studied. In this
study we take advantage of the large number of papers
which have been generated on panel flutter from the late
50’s to the mid 70°s. Without attempting to present a
complete review of previous work on panel flutter, a few
relevant previous studies are briefly mentioned below.

Most early work on panel flutter was restricted to
supersonic speeds (1.5 < M < 3.0). A complete
discussion of the fundamental aspects of panel flutter was
given by Dugundji'? using a linear, isotropic plate theory
and a linear aerodynamic theory. At the same time the
effect of temperature distribution on panel flutter was also
considered®. It was also recognized that geometrical
nonlinearities, due to moderate panel deflections, can play
an important role in panel flutter. This led to a number
of studies which emphasized the geometrically nonlinear
aspects of panel flutter using a moderate deflection type
of plate theory such as von Karman plate theory
combined with first order piston theory for generating the
unsteady aerodynamic loads'*'®. These studies showed
that when geometrical nonlinearities are included, the
linear stability boundary can be exceeded and the panel
develops, in most cases, stable limit cycle oscillations
with amplitudes having an order of magnitude equal to
the thickness of the panel. A comprehensive review of
pancl flutter problems is available in a monograph written
by Dowell".

The objectives of this paper are: (a) to formulate the

moderate deflection orthotropic, curved, panel flutter
problem in hypersonic flow; (b) determine the accuracy
of the unsteady aerodynamic loading based on piston
theory by comparing it to results obtained from solution
of the Euler equations for the hypersonic Mach numbers
considered; and (¢) to determine the influence of
temperature, orthotropicity, panel location, orientation,
and curvature on the aeroelastic behavior.

The numerical results presented illustrate panel

behavior by presenting the sensitivity of the limit cycle
amplitudes, to the parameters listed above.

2. Formutation of the Problem

The geometry of the problem is depicted in Fig. 2. It
is assumed that the panel is built of an orthotropic
material characterized by four elastic constants E,, E,, v,,
and v,,, and thermal expansion coefficients o, o, where
the thermal expansion coefficient in the xy direction is
assumed to be zero for the orthotropic case. The panel
is loaded by transverse loading and is subject to a
temperature change from the initial stress free state.

Nonlinear panel flutter studies were frequently based on
moderate deflection nonlinear plate theories such as the
von Karman plate theory. In this study a further
refinement is introduced by adopting Marguerre plate
theory®® which can also account for the initial
curvatures of the panel, Marguerre theory was initially
presented for the isotropic case in Ref. 20, and
summaries of the theory can aiso be found in Ref. 21,
The initial curvature of the panel, which is assumed to be
shallow is defined by Z(x,y). The other aspects of this
theory are similar 1o von Karman type of thin plate
theory. The extension of the theory from the isotropic
case of the orthotropic case, carried out here, is fairly
straightforward and the details of the derivation will be
omitted for the sake of brevity,

The middle surface strains and curvatures for this
theory are given by
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With these assumptions the equations of motion for the
orthotropic panel can be written in the following manner,
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where F in Eq. {4) is the Airy stress function, given by
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where the following definitions have been used.
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The thermal stress and moment intensity resultants are
given by
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The boundary conditions associated with this problem are
those corresponding 10 a simply supported plate along its
four edges.



It should also be noted that the Marguerre equations for
a shallow curved panel are appropriate when the criterion
for shallowness is defined as (A/R,) < 0.02, where R, is
a representative radius of curvature.

2.1 _Aerodynamic Loads

Hypersonic flow, which usually implies Mach numbers
agbove 5 is substantially different from subsonic or
supersonic flow. Depending on the precise conditions,
high temperature effects, viscosity and even a chemically
reacting boundary layer can be important, In fact, for
many steady or unsteady hypersonic flow problems,
analytical solutions are not available in the literature?.

The exploratory nature of this study justifies the
assumption of inviscid, continuum hypersonic flow over
a slender body. In this case the shock wave lies close to
the body and the shock angle is small, in such cases the
hypersonic flow can be approximated by the hypersonic
equivalence principle (Ref. 22, pp. 118). Combining it
with strip theory for slender bodies with elliptical cross-
sections allows one to approximate the pressure on the
surface of the body (or panel) by the pressure distribution
on an unsteady, one dimensional piston given by

-1
21221 (10)
I 2 q

where v, is the velocity of the piston, while p, and a, are
the pressure and sound velocity at the beginning of
motion®.

Equation (10) is equivalent to piston theory**, except
that in the case of hypersonic flow over a slender body,
p, and q, are the values behind the shock. These values
can be evaluated by using oblique shock relations, which
utilize the hypersonic similarity parameter, K, defined as®
K = M_0,, where 9, is a flow deflection angle, which can
also be related to the semi-angle of the body. The
oblique shock relations can be written as
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The velocity, v, is a superposition of the velocity due to
the changing body shape and the velocity due to the
motion of the panel.
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The velocity of the piston is limited, namely v, can not
exceed the speed of sound.

(14)

Using Egs. (10) and (14) the pressure distribution can
be expanded using the binomial theorem. It is common
practice in the process to retain terms up to the third
order, which implies a nonlinear pision theory. It is
convenient to rewrite Eq. (10) as

L - .p_l 1 +y&. +'y(721) [E]‘
a a
P. P. 1 1 15)

(Y+1)| v#




2.2 Temperature Distribution

The aerodynamic model used in this study is based on
the assumption that there is no interaction between the
flow and the panel temperature and the vehicle is flying
at constant speed. Furthermore the use of a thin plate
theory implies that it is reasonable to assume a uniform
temperature distribntion through the thickness of the
plate. While in the formulation of the problem provision
for introducing a general temperature distribution T(x.y)
exists, the actual results are computed for a uniform
temperature distribution. For an isotropic plate, simply
supported and uniformly heated (i.e. loaded in both
directions) the critical temperature, which produces
buckling is given by

T =[£]1__“’_ (16)
- a | 6ol +v)

2.3 Mathematical Representation of the Vehicle Surface

To study in a convenient manner the infivence of panel
location, on the surface of the vehicle, on its flutter
characteristics a mathematical representation of the lifting
bady associated with a generic hypersonic vehicle is
needed. An analytical expression which approximates
such a configuration is a hyperboloid of iwo sheets,
described by

[f+C‘I-Zi-f=1 @G>0 (7D
2 2 A
C; Ca

4]

Equation (16) represents a hyperboloid shifted on the
x-axis such that the vertex of the right surface is located
at the origin, The parameters ¢,, ¢,, ¢, are selected so as
to resemble the dimensions of the NASP (considered as
a generic hypersonic vehicle)

width _ 1 height _ 1
length % width 3

which yields

¢, =05LY; ¢ =05LyY;: ¢ =Ly7Y/6

where ¥, = (1/64 vV - 1)

v,=52 and 0<y <0125

where v, may be adjusted to change the curvature of the
surface. This surface satisfies the shallowness conditions,
stated earlier, at most locations on the surface of the
vehicle except the nose region.

Using the equation of the surface, Eq. (17), a
coordinate transformation can be obtained which relates
the global body coordinates, %, ¥, and %, to the
components of a position vector (r,, r,, r,) which
identifies the location of the panel comer, and the x, y
local coordinates of the panel. Using these relations the
equation of the shallow curved initially undeformed shape
of the panel can be represented by

Z(xy) = i_[-xl AT, ] (18)

where the quantities, A,, A,, Ay are complicated functions
of £, 7, £, ¢, ¢;, ¢ and 7, 7, and r,. For the sake of
brevity, these fairly long expressions are not given here,

In the actual equations of motion the initial shape of
the curved panel is represented by

N
Zxy) = Y f; z, sin[i:_f ]sin[f_:_y_] (19)
=] mwl

where the Fourier coefficients are given by

L]
z,, = [ [z0cy) sinf 225 Jsin[ 22 \axay  (20)
a 5

[

which is consistent with the boundary conditions of a
simply supported panel.

3. Method of Solution

The equations of motion are solved by using Galerkin’s
method 10 eliminaie the spatial dependence in the
problem, and subsequently, the resulting ordinary

.



differential equation are integrated directly in the time
domain®.

The approximate solution is represented by
N N
way) =Y Y T, sin 2= sin.? 21}
aw] mm] a
which satisfies the boundary conditions of a simply
supported panel,

The solution consists of two parts, finding a solution
for the Airy stress function F(x,y} and then applying
Galerkin’s method to obtain a set of nonlinear ordinary
differential equations.

The Airy stress function has to satisfy Eq. (6). The
solution consists of a homogeneous part F, and a
particular part F,. The homogeneous solution satisfies
Eq. (6) when all the terms not related to F are deleted

IB‘F_Z{V,, 1 | oF

ERox* h|E, 2G, |ax%y? @2)
S L
ER oy

which is satisfied by assuming a solution in the form

R = Lericycm @

The coefficients C,, C, and C; can be obtained by using
the in-plane boundary conditions, which imply no shear
and zero displacements at the boundaries'®,

After a considerable amount of algebra one obtains

12l

Eh
T T +2Z, ) - — (0, +v 0 )AT
B

e 2Rl 3]

E h
T (T _+2Z )-Z_(o +v, o)AT

>y

C,=0 (24)

The mathematical details required for the particular
solution are quite lengthy and will not be presented here.
However, an outline of this solution can be found in Ref.
18. '

Next, the solution for the stress function F and the
assumed solution, Eq. (20) are substituted into the
differential equation of motion, Eq. (5) and the
aerodynamic loading term Eq. (15), this procedure leads
to lengthy expressions due to the retention of the third
order terms in the piston theory and presence of the
temperature dependent loads. At this stage a number of
nondimensional definitions are introduced to facilitate the
treatment of these equations. The nondimensional
quantities are listed below

! - poha“ X
T = H = ; = _;
T \’ D, ¢ a

@25
- T - z
T =2, Z =2
- h - h
2.3
A = Va; 7= P2
DM, poht

Next Galerkin’s method is applied on the resulting
mathematical expressions. This procedure can be
symbolically written as

_!JL[W} sinnsE sinm ddn = 0 26)

fors=1,N, r=1N

where N, and N, represent the number of modes
selected in the x and y direction respectively. Since the
flow on the surface of the panel is lined up with the x-
direction, the number of modes used in this direction is
taken to be four, ie., N, = 4. Previous research
indicated that six modes in the flow direction produce
converged solutions, however four modes provide good
accuracy for an exploratory study, such as conducted in
this paper. To be able to account for panel orthotropicity
two modes were used in the y direction, ie., N, = 2.



Thus, the structural dynamic problem is represented by a
total of 8 modes.

Carrying out the detailed algebraic operations required
for the implementation of Eq. (26) involve a large
amount of algebra, and results in lengthy algebraic
expressions, due to the retention of the higher order terms
in the piston theory. These steps are not presented here
due to their excessive length. However, it shounld be
noted that a detailed description of the steps involved is
available in Ref. 18.

The resulting equations are transformed into first order
form, which can be written symbolically as

{F) = {f,, (¥ A, AT, 1)} @7)
where
Tlﬂ!
y =4~
~ T,

Equations (27) represent a system of nonlinear ordinary
differential equations which are solved by direct
numerical integration. In this study an available
computer program based on the Adams PECE formulas®,
was used.

4. Aliernative Representation of the Aerodynamic Load

In the discussion of the unsteady aerodynamic load we
pointed out that piston theory can be viewed only as an
approximation for the unsteady aerodynamic load. Using
an exact numerical solution to the Euler equations can be
viewed as a potentially better approximation, and one
might be tempted to base acroelastic studies in hypersonic
flow, on such a solution.

Fortunately, for the case of panel flutter, a relatively
simple calcnlation can be carried out to resolve this
question. One can pick a simple two dimensional
problem, in which both the motion and the deformed
shape of the panel are prescribed and given by

h
For this case Eq. (15) can be used to wrile a pressure
coefficient in nondimensional form, given by

Ap = %[ajw +\I§w,t

W) ( ]sm[znx]sinmt @8)
h a

and

W(ET) = [L:_Jsin(Zug)sin(Kf'c) 30)

where the following nondimensional quantities have been
used in Eqgs. (29) and (30)

Combining Egs. (Z9)-(31) one has
= % %][ C,B)sink 1 + ¢, (E) cosK,t]

32
( j [ea®) sinK + C, (E) cosK ]1( )

B(Y61[ j[cu(!;)smK'w A(6) cosK 2 T

where

)
J

A
b 2rcos2nf

o = [%) ‘ TVE K, sin2ng

In addition to calculating the unsteady pressure
coefficient from Eq. (32), the pressure coefficient was

ix]
N

-



also obtained from the direct numerical solution of the
Euler equations as described next.

The two-dimensional unsteady Euler equations are
solved in a 66 x 38 Cartesian grid which is fixed during
the computations. In the Cartesian coordinates, the Euler
equaticns can be written in the following conservation-

law form: - _ _
_ar? + ,%E + _aa_ci = () (33)
x ¥

where U = [p, pu, pv, ¢ly, and

pu pv
2
};- - pu“+p ’ G— - puv (34)
puv pvi+p
eu + pu ev +pv

In the equations above, p, #, v, p, T, and ¢ denote
density, velocity components in x and y directions,
pressure, temperatare, and total energy per unit volume
(e = plty- 1)+ p(i# + v)/2) respectively. The gas is
assumed to be perfect gas with y= 1.4 and gas constant
R = 287.04 Nm/kg°K.

The numerical method used for solving the
; conservation equations are the essentially nonoscillatory
(ENO) schemes®. The ENO schemes were originally
developed for computing high-speed flows with shock
waves with high order accurate nonoscillatory solutions.
Compared with other high resolution upwind schemes
which are usually not uniformly high order accurate, the
ENO schemes can achieve nonoscillatory solutions with
uniformly high order accuracy in space and in time.
Therefore, the ENO schemes are particularly suitable for
computing loads for dynamic cases such as the flutter
problem where high frequency transient flow fields exist.
The ENO schemes have been applied to compressible
viscous flow in an previous paper” and the same
computer code is used here to solve the Euler equations
for the moving panel problem.

The main features of the numerical method used in the
present computations are as follows. The conservation
equations are solved by using the finite volume method
with second order ENO schemes. The ENO reconstruc-

tion is based on two-dimensional primitive functions of
the conservation variables and numerical flux vectors are
computed by using the Roe approximate Riemann solver.
The time stepping scheme is the explicit TVD Runge-
Kutta scheme with the order of accuracy in time being
consistent with the order of accuracy in space. The
details of the numerical methods used in the code can be
found in Ref. 26.

The boundary conditions for the flow variables in the
supersonic free stream are specified to the given values;
the boundary conditions in the outflow boundaries are
computed by using linear extrapolation from the interior
of the flow field. Since the amplitude of the oscillation
of the panel is very small compared with the length of
the panel (1:225), the computational boundary at lower
surface is fixed at y = 0, instead of moving with the
panel, and the velocity boundary conditions at the wall
surface y = 0 are specified as:

(Yo 9 15
v u(_a_;} 2 (35)

where y = y(x,t) is the prescribed oscillation of the panel
surface, The present approximate boundary treatment on
the wall surface is suitable only for small amplitude
oscillation. In the case of large amplitude motion, the
grids can no longer be fixed and have to move with the
wall.

The computational results in this paper are obtained by
an explicit second order accurate ENO scheme in both
space and in time, A CFL number of 0.5 is used for the
time accurate computations. The other parameters used
in the computations are listed below.,

Mach Number M_ = 10.05
Temperature T_ = 223.16(K)
Pressure p. = 2641.6 (N/m?)
Surface Function y = Asin _“LE sin ot
A=0002m n=2

® = 1.206%x10°radfsec L = 0.45m

The panel properties which are also relevant to these
calculations are also given below:



E = 69% 10° N/m*; v = 0.33 (material alominum) ;
k=0002m; a=045m; p, = 277x10° Kg/m®
D =5162Nm; K, =80; y=14; B=10

v =003351; A = 65942

Figures 4 and 5 depict a comparison of the pressure
coefficient, obtained from piston theory and from the
solution of the Euler equations plotted as a function of
the nondimensional time. Figure 4 depicts ¢, as a
function of time at § = 0.40 and Fig. 5 presents the same
information at & = 0.85. It is clear from these figures
that the principal difference is between first order and
second order pision theory. The results of the second
order and third order piston theory (which are very close)
are also in close agreement with the result obtained from
the solution of the Euler equations for this particular
Mach number and prescribed panel motion.

These results indicate that a similar comparison with
the results obtained from the solution of the Navier-
Stokes equations for the same test case, would be a
useful endeavor.

5. Results and Discussion

The results obtained in this study are usually presented
in the form of stable limit cycle amplitudes evaluated for
values of the dynamic pressure parameter A > A,,; where
J., is the critical value at which the linear panel flutter
problem becomes unstable. The parameters which have
been used in the calculation are given in Table. 1. The
structural damping, € = 0, for all the calculations
performed.

A typical limit cycle is shown in Fig. 6. Careful
numerical tests were done for selecting the correct
stepsize AT at which converged limit cycles are obtained.
All the results presented in this section were obtained for
flat panels.

As indicated in the previcus section, the primary
difference in pressure coefficients between linear, or first

10

order piston theory, and higher order theories is due to
the second order terms. The results presented in Fig. 7
show the influence of various orders of piston theory on
the stability boundary and limit cycle amplitudes of
isotropic panels. All the calculations are carried out with
four modes in the streamwise direction, and two modes
in the direction perpendicular to the flow direction. The
limit cycles are evaluated at £ = 0.75 and 1 = 0.50;
between five 1o six values of A > ), are used 10 generate
a typical limit cycle amplitude plot as a function of . It
is evident from the figure that the differences in limit
cycle amplitudes are similar 1o the differences in pressure
coefficients when one increases the order of piston
theory.  Figure 8 illustrates the behavior of the
orthotropic panel, which for this case, resembles closely
its isotropic counterpart. All subsequent resuits presented
in this section were calculated for piston theory with third
order terms included.

The influence of aerodynamic heating is considered
next. A uniform temperature is imposed on the panel.
For the isotropic case it is assumed that the panel is made
of aluminum, with o, = 1.2x 10*/°F. Figure 9 shows the
limit cycle amplitudes for three uniform temperature
distributions T = 5°F, T = 10°F, and T = 15°F, imposed
on the panel. It is evident that aerodynamic heating
reduces A, significamly and it also increases the limit
cycle amplitudes. For the particular combination of panel
geometry, material and boundary conditions increasing
the temperature by 5°F from the initial stress free state
reduces the critical dynamic pressure by 20% and leads
to substantial increases in limit cycle amplitudes.

The influence of the temperature on the orthotropic
panel is depicted in Fig. 10. For this case it is assumed
that the panel is a graphite/epoxy orthotropic plate®, with
o/, = 0.001 and o, = 2.1 x 10°°F. The effect is
somewhat more pronounced, than in the isotropic case,
because the reduction in stiffness of the heated
orthotropic panel exceeds that present in the isotropic
case. These results clearly indicate the importance of
carrying out a combined aeroelastic and heat transfer
analysis where the temperature (equilibrium or time
varying) is accurately obtained from the solution of the
heat transfer problem.
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Preliminary calculations, for which results are not
presented here, were also done to determine the effects of
nonuniform temperature in the x and y direction, on panel
flutter, It appears that the correct value of the
_ temperature, when assumed to be uniform over the area
of the plate, is more important that its p}ecisé distribution
in the x and y directions.

The shape of the hypersonic lifting body, and a
representative panel, are schematically illustrated in Fig.
3. For such a configuration, variation in the hypersonic
similarity parameter can be significant. Three values of
the hypersonic similarity parameter, discussed in the
aerodynamic loads section were considesed: K= 1K=
1.25 and K = 1.5 which correspond to a vehicle flying at
M. = 10 and having semiangles (of inclination or flow
deflection) corresponding to 8, = 5.7°; 0, = 7.2° and 0,
= 8.6°. The resulis are shown in Fig. 11, It is evident
from the figure that this effect, associated with the
presence of shock waves influences both A, as well as
the magnitude of the limit cycle amplitude.

Finally, it is important to note that another flow related
effect, which can have an influence similar to the
hypersonic similarity parameter, is the flow orientation
(or direction) which was studied in detail, in the context
of conventional panel flutter in Ref. 18. This effect is
due to the fact that the x and y directions which represent
the edges of the panel will not, in practical cases,
coincide with the flow direction. In the current study it
was assumed that the flow is in the x-direction. In
general, however, the flow will have an orientation angle
o relative 1o the x-direction. For this case, Eq. (14) will
have to be modified

- 1 ow dZ  ow
¥ a'M'[T/:T+('3?+'EJ

coso + ( 9z + aw ]sina}

(36)
oy

which leads to coupling of the panel vibrations in the x
and y directions', Figure 12, taken from 18, shows the
effcot of nonlinearity on the dynamic pressure ratio
(Ajo/(M)ae for two different isotropic panels. For a/b =
1.0, no difference is evident between (A)o/(A),..o for (w/h)
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= 0.80 and (A,,)./(A.)eec O the scale of the figure. For
(a/b) = 2.0 nonlinearity slightly increase the effect of
flow direction on the dynamic pressure ratio. For (a/b)
= 0.50 the effect is much more substantial, and it is due
to a combination of nonlinearity and aerodynamic
damping. "

6. Concluding Remarks

In this paper Marguerre shallow curved plate theory has
been extended to the orthotropic case and used 1o study
the hypersonic nonlincar flutter of panels undergoing
moderaic deflections.

It was found that for high Mach numbers the unsteady
solution of the Euler equations using computational fluid
mechanics gives virtually identical pressure distributions
to that obtained from nonlinear third order piston theory.

The difference in limit cycle amplitudes obtained with
linear and third order piston theory is of the order of 5-
7%. Tt was also found that aerodynamic heating has a
strong influence both on the critical dynamic pressure
parameter A, as well as on the amplitudes of the panel
limit cycles. This suggests that the heat transfer problem
governing the panel temperature should be solved
together with the aeroelastic problem. Orthotropic panel
construction can be more sensitive to temperature effects.

The hypersonic similarity parameter, panel location on
the surface of a hypersonic lifting body, and relative
orientation between the flow dircction and the edges of
the panel are important parameters which can
significantly influence the aeroelastic behavior of
structural elements constituting the skin of a generic
hypersonic vehicle.
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Table 1: Data Used in the Calculations

to Two-

Isotropic Orthotropic
afb 1 1
ath 100 100
EJE, 1 20
Vo 03 03
VyfVy 1 20
p./p alh 1 1
M, 10 10
modes 4x2 4x2
E 0.75 0.75
n 0.5 0.5
All Movaable Fin
/ Alleron
/"':Z¢‘// Fiap
Figure 1: - Schematic Representation of a Generic
Hypersonic Vehicle,

Cp

28. Sun, C.T. and Chen, 1., "Transient Thermal Stress
Analysis in Graphite/Epoxy Composite Laminates,”
Developments in Theoretical and Applied Mechanics,
Vol. 11, 1982, pp. 309-328.

Figure 2: Definition of Panel Geometry.
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Figure 3:

Schematic Representation of Hypersonic

Vehicle Body.
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