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Abstract

It is shown from both analytical investigation and
mumerical computations that the 1D and plane-2D
Burnett equations are unstable to disturbances of small
wavelengths. This fundamental instability arises in nu-
merical computations when the grid spacing is less than
the order of a mean free path, and precludes Burnett
flow-field computations above a certain maximum al-
titude for any given vehicle . A new set of equations
termed the “augmented Burnett equations” has been
developed, and shown to be stable both by a linearized
stability analysis and by direct numerical computations
for 1D and 2D flows. The latter represent the first
known Burnett solutions for 2D hypersonic flow over
a blunt leading edge. Comparison of these solutions
with the conventional Navier-Stokes sclutions reveals
that the difference to be small at low altitudes, but
significant at high altitudes. Burnett CFD appears to
be especially important for predicting aerodynamic pa-
rameters sensitive to flow-field details, such as radia-
tion, at high attitudes.

1. Introduction

A number of advanced hypersonic vehicles are antic-
ipated to operate in the continuum transitional regime
at high altitudes where the thickness of the bow shock
waves 1s a sizable or dominant part of the shock detach-
ment distance. Under these conditions, CFD codes for
the flow past the vehicles must compute through the
structure of hypersonic shock waves. However, it has
long been known that the conventional Navier-Stokes
equations are inaccurate for this purpose, and hence we
need to develop some other set of constitutive equa-
tions, more advanced than Navier-Stokes, to provide
realistic continnum-flow computations for hypersonic
flows at these high altitudes.

The development of an advanced set of continuum
equations of motion is necessary for certain practical
applications. Aeroassisted vehicles such as the AOTV
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and the AFE operate mainly at altitudes in the contin-
uum transitional regime. Anticipated applications here
would be to their acrodynamic stability and heating
parameters as well as to flow-field radiation. A simi-
lar situation exists for some Mars return vehicles that
would use high-altitude aerobraking to change orbit.
Still other applications involve certain aerothermody-
namic computations for the upper portion of the ascent
trajectory of vehicles such as the NASP which have
cowl lips and leading edges with relatively small radius
of curvature. These are subjected to very severe heat-
ing rates in the continuum transitional regime where
the numerical computations using the Navier-Stokes
equations are inaccurate. Additional relevant appl-
cations are to hypersonic flow-field radiation at high
altitudes, which can be important both to the heat-
ing rate on vehicles such as the AOTV, as well as to
the hard-body radiation signature of a missile traveling
through the upper atmosphere.

It is noted that a completely different approach to
that investigated herein for circumventing the inaccu-
racy of Navier-Stokes CFD is to use particulate-flow
computations such as the DSMC method of Bird{!! and
the particle simulation method of Baga.noﬂ{2’ 3l This
type of flow simulation, however, can require relatively
large amount of computer time, especially at lower al-
titudes. Hence the development of an advanced set
of continuum equations having a reasonable accuracy
should be much more computationally efficient.

In order to develop the advanced set of constitutive
equations, Fiscko and Chapman["' 5 reinvestigated and
proposed the Burnett equations® | which are higher or-
der approximations to the Boltzmann equation than
the Navier-Stokes equations. They found that the
Burnett equations provide much greater accuracy than
the Navier-Stokes equations for one-dimensional shock
wave structure in monatomic gases. However, both
an analytical analysism and the past computational
experience[al showed that the Burnett equations are
unstable to very small wavelength disturbances en-
countered in fine-mesh numerical solutions. This un-
stability makes it impossible to apply the Burnett equa-



tions to practical flows in two and three dimensions
above a certain altitude for any vehicle. Therefore, we
need to overcome the instability of the Burnett equa-
tions in order to apply the equations to practical flow
problems.

Guided by the linearized stability analysis, this pa-
per will develop a new set of equations termed the
“ augmented Burnett equations” to stablize the con-
ventional Burnett equations. We will show that the
avgmented Burnett equations are stable and yield es-
sentially the same results as the conventional Burnett
equations when stable solutions exist for the later equa-
tions. The new set of equations has been tested by a
theoretical stability analysis as well as 1D and 2D flow
computations following the objectives below.

The Research Objectives

l. To develop augmented Burnett equations which
overcome the instabilities encountered when fine-
mesh computations are attempted with the con-
vensional Burnett equations.

2. To test the computational stability of both the
conventional Burnett equations and the aug-
mented Burnett equations by solving them numer-
ically with progressively refined meshes for both
one-dimensional hypersonic shock structure, and
two-dimensional flows past a blunt leading edge.

3. To test the accuracy of the augmented Burnett
equations by comparing their results with the ex-
isting experimental data and the DSMC results on
hypersonic shock structure in argon.

4, To compare the two-dimensional Burnett flow field
with the corresponding Navier-Stokes flow field us-
ing the same set of surface boundary conditions;
Also to compare the computational results of the
two equations with existing experimental data and
DPSMC results. The two test cases computed are:

¢ Supersonic and hypersonic flows past cylin-
drical blunt leading edges at both low and
high altitudes;

o Hypersonic flows with rotational nonequilib-
rium past a double-ellipse-shaped blunt body.

2. The Governing Equations

We first consider the one-dimensional governing
equations for stability analysis and for shock wave
structure computations. The mass, momentum and
energy conservation equations for a compressible vis-
cous flow without rotational, vibrational and chemical
nonequilibrium are as follows:
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and ¢; and q; are the viscous stress and the heat flux
terms, of which the relations with the gradients of the
flow variables are termed the constitutive equations.

Eq. (1) together with the two constitutive equations
for o1y and g; given in the next section form a complete
set of governing equations for the one-dimensional gas
flow.

3. The Constitutive Equations

The gas flow regime can be characterized by the

Kundsen number Kn, which is defined as:

oA ,

Kn= 7 (2)
where ) is the mean free path and L is the macroscopic
characteristic length of the flow. When Kn increases
from 0 through the order of 1 to o, the gas flow changes
from the translational equilibrium regime through the
transitional regime to the free molecule regime.

The constitutive equations for a gas flow of small Kn
can be derived as approximate solutions of the Boltz-
mann equation, which is accepted as the general gov-
erning equations for gas at any Kn. The Boltzman
equation is solved by a successive iteration method,
i.e. the Chapman-Enskog met.hod[sl, which leads to the

following general three-dimensional constitutive equa-
tions:

i = (0) + a(l) + 0(2 (3)
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where 1 = 1,2,3 and j = 1,2,3 and the superseript
numbers represent the order of accuracy of the solu-
tions.

When A'n == (), only the first terms in the equations
are needed and we obtain the zero-order Euler cqua-
tions, i.e.,

o =0 (4)

and

g =0. (5)



As Kn increases, the flow departs from the equilib-
rium regime. Hence more and more high order terms
in Eq. (3) become significant and are needed to solve
the flow equations accurately.

When the gas flow departs slightly from equilibrium
(Kn < 0.1 ), we only need to retain the first two
terms and obtain the first-order Navier-Stokes equa-
tions, which contain the first-order derivatives of the
flow variables in the constitutive equations; As Kn be-
comes larger, we need to retain the first three terms
and obtain the second-order Burnett equations, which
contain the second derivatives and the products of the
first derivatives; Similarly, the third-order solutions are
the super Burnett equations; and so on.

Therefore, the constitutive equations of the nth or-
der approximation are:

G = tr,(;)++~-+o'g-')
(6)
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where n represents the level of approximations, i.e.,
n =1 the Navier-Stokes equations
n = 2 the Burnett equations
n =3 the super Burnett equations
The detailed expressions for or ) and q are given
as follows (n = 1,2,3) :
The First-order Solutions
The general expressions for o( ) and q, > are:
1 Bu
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where a bar over a derivative designates a nondivergent
symimnetrical tensor, i.e.,
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In one dimension, the general expressions reduce to
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In two dimensions, the general expressions reduce to
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The Second-order Solutions
The general expressions for 0(2) and q(g) arel 9
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where the numerical constants w; and #; are computed
by the Chapman-Enskog method, depending on the gas
molecular repulsive force models® used. So far, only
the coefficients for two extreme cases, the hard-sphere
model and the Maxwellian model ( F o r=% ), are
computed as follows:

Maxwell Molecules | Hard-Sphere Molecules
w1 10/3 4,056
W 2 2.028
wa 3 2.418
ty 0 0.681
s 3 0219
we 8 7.424
8 75/8 11.644
8, -45/8 -5.822
b3 -3 -3.090
A 3 2.418
Bs 117/4 25.157




Since the molecular model for a real gas falls in be-

RT
. 110] + 4 UgUy + 3 RTxy 4 By — pPay
tween the two extreme cases above, Lumpkini™ fol- P

lowing Woods': 12 ysed values of w; and 8; for real 4 G5 — T,TT + B — RT ey (22)
gases interpolated linearly in the temperature-viscosity ra (>
exponent {w)} from the data above. R T, T
In one dimension, (16) and Eq. (17) reduce to +h = P pety t ﬂ7 Py )
2
UEE) = % { a;u + a7 RTpp+ and
RT RT 2 2o 1
oy —;‘Pz:+011 ?2-—,0§+ (18) 9’(1 Y= % (TI?Twu3+72TTxvy + vatizs
Ly }—;szx —f—am%Tj ) + Yatlyy + Vs Vzy +76TT Vg (23}
1 1 i
and '{"Y?T Tytty +'TS; Prux+79'_ovay
2 1 1 1
q{lm = E;" ( T ‘.1','-: Trtir + 3 tzet + 710; Pty T f—j Py ) ,
1
Y8 = prlz ) - (19)
p a2
L (2) P 1o L
In two dimenstons, the general expressions reduce Lo 9 = ) (7 7 vy + 72? yUz + 73y
2
U(l?i) = EI-)- ( oy ui + vy Up Uy + a3 vs + YaUgr + Toloy + ‘YG T ty (24)
1 1
+ g uyte + 05 ug + g vg + ’)’7'T Teve + 78; Pyty + ’}’9; Fylx
+ xy RTL‘:: + g R:Tyy + ag RPT Prz -+ 710-]; OxPx “+ '\,‘Hl Pziy )
P p
RT RT 4
— — 20 i
+ @yg p Pyy + @y pe Pz (20) where the coefficients ay’s, Ji’s and +;'s are as follows:
R R
+ org = Tepy + 013 = T2
12 73 Pz 13 T i , .
(a4} = gy — W2 + UJG
RT R
+ g ?g"Py + a5 — Ty py ay = gwy+ gwa — Zws
R ’ ay = —-1-w1+ Zwy — tws
+a16_,fjf)s ay = -—gwq-ff us
oy = w2 + 13
g = Wy + —Ws
o3 = £(01L’2+020U + oy vl a7 = _szwt 340
2 p v v * ] as = fwy — w3
+ a4 vty + 05 VP A+ e Fy = 3w
Flp = =FWo
RT 3
+ ary RTyy + o3 RTx:}: -+ g = Pyy 1] = -s-u:))g .
AT wr, iz = 75wt 5
+ayp —— pez oy ""“,P2 (21) "z = §w4+§w5
p pr @y = —dwg
R A s = tws — tw
oy — T? 15 3wW2 — 3%
o P vPy b en Tty alg = —gws — §Ws
RT R
+ g -;2— pE+ars = Teps
R r & = .fwl gwg + ?wa
+ s -T*Tf). B2 = swi— Fwa+ gws
s = —wrtuws
Pa = —uwy )
&2 = o By = witws N
u? B = wo
= _"5' {8y Ugly + B, Uyly T By urvg B = "%WQ 4 15(_.;4



(71 = 91+$92+¥03+‘§‘95
v = esm 105+ 262
o=
vs = +04+ 262

oy = 2024+ ii65+193

Yz = 193'1'-%
n = 63
Yo = —-—83
Tio = %93

[ 71 = 303

It is noted that the Chapman-Enskog series expan-
sion, which is generally regarded as only asymptoti-
cally convergent, is not the only means of deriving
the Burnett equations. Woods('"* 13 has shown that
these equations can be derived by two other indepen-
dent means without reference to this expansion. Thus
the uncertain convergence properties of the expansion
are not germane to the present investigation.

The Third-order Solutions

The one-dimensional expressions for a'(

(13]

and q

were given by Simon'™! and the general expressions

were given by Shavaliev'"l. Both authors assumed the
gas to be Maxwellian.
We only list the one-dimensional linear third-order

terms as follows (Maxwellian gas):
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4. Stabilization of the Burnett Equations

For gas flows in the continuum transitional regime
where K'n is the order of one, the Navier-Stokes equa-
tions become inaccurate. The second-order Burnett
equations are needed as the constitutive equations to
circumvent the inaccuracy of the Navier-Stokes equa-
tions. The necessity of using the Burneit equations
has been demonstrated by Fiscko and Chapma.n[4‘ 3],
They found that the Burnett equations are significantly
more accurate than the Navier-Stokes equations for hy-
personic shock wave structure in monatomic gases.

However, the Burnett equations are known to be un-
stable when solved by numerical methods using fine
meshes. The unstability of the equations can be shown
by a linearized analysis. The analysis was reported
by Bobylevm in 1982. In this section, we first repeat
the stability analysis of Bobylev to show that the solu-
ttons of the Burnett equations are exponentially unsta-
ble to periodic perturbations when the wavelengths of
the perturbations are shorter than some critical length

of the order of the mean free path. Then, the same
method of analysis is used to show that the Burnett
equations plus some linear higher-order terms are ak
ways stable to small perturbations. These “ augmented
Burnett equations ” are proposed in order to solve the
conventional Burnett equations for practical problems
numerically and to retain the accuracy of the conven-
tional Burnett equations.

The Conventional Burnett Equations Are Unstable

We consider a simple one-dimensional problem: the
response of a uniform monatomic gas to a small peri-
odic perturbation wave. The initial gas variables are
p=po, T =Ts, u= ug = 0. Since the perturbation is
weak, the general one-dimensional governing equations
(1) can be linearized to the following equations of small
disturbances:
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where o is the linearization of or1: and g is the lineariza-
tion of ¢, in Eq. (6).
For the Burnett equations for Maxwellian gas, the
linearized terms o and ¢ are:
4 ? RT
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where ay = %, oy = -3 and y3 = —1 for the
Maxwellian gas.

We introduce the following non-dimensional vari-
ables for the equations from Eq. (27) to (31):

’

(p ~ po)/pa
(T = To)/To

u/RTy (32)
t/(10/p0)
SB/LQ

where Ly = po/(pov/RTo) is the characteristic length
which is related to the hard-sphere mean free path (A)
of the gas by

Substituting Eq. (32) into the equations from Eq.
(27) to (31) leads the following non-dimensional per-
turbation equations:
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Assume the solutions of Eq. (33) with the initial per-
turbation V, = V ™% to be:
V’ :T? etw:t:’ .e¢>tl (37)

where the variable w is the non-dimensional circular
frequency of the periodic perturbation wave which has
the following relation with wavelength L

2 A
T =492

= T = (38)

The exponent ¢ represents the response of the govern-
ing equations to the perturbation and can be written
as

d—a+ G

where o and § are real numbers, and o represents the
attenuation and # represents the dispersion. The con-
dition for the Eq. (37) to be stable is:

a <. (39)

Substituting Eq. (37) into Eqs. (33), (35) and (36)
leads to the following equation of characteristics for the
Burnett equations:

plé,w?) = 18 ¢° + 69w $2+
(30w? 4 97w — 140%) ¢ +
(45w + 60w°%)

=0. (40)

The equation above can be solved numerically to ob-
tain

A
F(4.925).
From this equation, we can plot the trajectories of
¢ = « + B¢ in the complex plane as L decreases
from +co to 0 (Kn increases from 0 to +oo) in Figure
1, which also contains the trajectories for the Navier-
Stokes equations obtained by the same method.

In Figure 1, the trajectories of the Navier-Stokes
equations are always in the stable region (@ < 0) and
move towards the negative « direction as L decreases.
This means that the Navier-Stokes equations provide

¢ = flw)= (41)

more attenuation as the wavelength of the perturbation
decreases, which is intuitively obvious.

On the other hand, two branches of the trajectories
of the Burnett equations go into the unstable region
(@ > 0) when L < Lo (Ler = 2.04) for Maxwellian
gas), i.e., if the wavelength is smaller than L., the
Burnett equations become unstable.

A stability analysis for the two-dimensional Burnett
equations also leads to the same results as those of the
one-dimensional Burnett equations. The dotted lines
in Figure 1 are also the characteristic trajectories of
the two-dimensional Burnett equations responding to
a perturbation propagating in an arbitrary direction.
Therefore, the two-dimensional Burnett equations are
also unstable to a disturbance of small wavelength.

The Augmented Burnett Equations Are Stable

From the preceding analysis, the Burnett equations
are unstable to small-wavelength perturbations. Our
goal is to stablize the Burnett equations so that the
new equations meet the following requirements:

1. Be stable in the linearized stability analysis.

2. Be as accurate as the conventional second-order
Burnett equations.

To satisfy the second requirement, we can only add
higher order terms to stablize the conventional Bur-
nett cquations. The most natural choice would be the
complete super Burnett equations. However, the su-
per Burnett equations, like the Burnett equations, are
also unstable to small perturbations when the wave-
lengths are smaller than some critical value. Figure 2
is the characteristic trajectories of the super Burnett
equations for a Maxwellian gas. One branch of the
trajectories enters the unstable region when L is small.

Therefore, we augment the Burnett equations with
some terms of third-order derivatives which have the
same forms as those in the super Burnett equations
but have different coeflicients. The Burnett equations
plus the augmented terms form the new constitutive
equations named “the augmented Burnett equations”
as follows:

75 = ooy ol
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where the ol 0 4 and qj are given by Section

3; 05;.1 and qJ(- *) are the augmented terms.

One-dimensional o‘&‘{) and qg“) are:
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where the coefficients wy, 5 and #; of the augmented

terms are so selected that the new augmented Burnett

equations are stable by linearized analysis. The coeffi-

d cients are chosen to be those of Wang-Chang[lsl for a
Maxwellian gas:
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We obtain the characteristic equation for the
one-dimensional augmented Burnett equations for
Maxwellian gas as follows:
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Figure 3 is the characteristic trajectories for the aug-
mented Burnett equations. The trajectories of the new
equations are always in the stable region. Therefore,
the augmented Burnett equations are stable.

{a)

General a‘{j and g¢;

—~’ We have generalized the one-dimensional augmented
terms in Eq. (43) and Eq. (44) to the following general
eXPressions:
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where wr, s and 67 are given by Eq. (45).

Two-dimensional a{ ) and ¢{¥:

From the general expressions above, we obtain the
two dimensions terms as follows:
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A stability analysis for the two-dimensional aug-
mented Burnett equations shows that they have the
same characteristic trajectories as the one-dimensional
case {Figure 3), hence they are stable for all wave-
lengths.

The stability analysis so far has been for the simplest
linear one-dimensional case only. But the nonlinear
terms in the Burnett equations are important in most
of the practical hypersonic applications. Therefore the
linearized stability analysis provides only the necessary
stability condition for the nonlinear Burnett equations.
Whether the nonlinear augmented Burnett equations
are stable in practical computations needs to be tested.
We will test the stability properties of both the conven-
tional Burnett equations and the augmented Burnett
equations for practical numerical computations by pro-
gressly refining the computational meshes.

5. Hypersonic Shock Wave Structure

We have computed the hypersonic shock wave struc-
ture in a monatomic gas for the conventional Burnett
equations and the augmented Burnett equations to test
the stability of both equations and to compare their re-
sults with these by Fisckol¥

The governing equations for this problem were given
in Section 2. The computations used uniformly spaced
grids. The upstream boundary conditions were speci-
fied and those in the downstream were determined by
the Rankine-Hugoniot relations, hence the question of
which boundary conditions are appropriate for the Bur-
nett equations was avoided. Since the nonlinear Bur-
nett terms became important only in the strong shock
wave structure, the problem provided a good test for
both the accuracy and the stability of the nonlinear
Burnett equations.

For comparison purpose, the same flow conditions
as Fiscko were used in the computations, ie., a
monatomic gas with the molecular weight of argon was



computed for a shock wave with the following param-
eters:

(T, = 300°K
Poo = laim
Pr = 93
{ v = 53 (54)
po= po(T/Tp)”
o = 0.00002272 Ns/m?
To = 300°K

\

where w depends on the molecular mode! used in the
computations. We used the same n = 10 exponential
repulsive molecular force model as Fiscko’s for gas ar-
gon; the resulting w was as follows:

Maxwellian
w i.0

An mmplicit flux-splitting method was used to
solve the governing equations. The nonlinear terms
and higher order derivative terms in the conventional
Burnett equations and the augmented Burnett equa-
tions were also treated implicitly, which required solv-
ing a pentadiagonal matrix equations simultaneously
for each time step. The details of the pumerical for-
mulation for the Burnett equations are not presented
in this paper because of the page limitation.

Argon | Hard-sphere
(.72222 0.5

{16]

Stability Test

We tested the stability of the conventional Burnett
equations and the augmented Burnett equations by
progressively refining the computation mesh (increas-
ing the number of grid points within a fixed length).
The computations were made for a Mach 20 shock wave
in Maxweilian gas since this gas model had exhibited
the most severe instabilities in Fiscko’s work.

We started the computations for the shock struc-
ture from a 20-grid-point coarse mesh. The computa-
tions for both the conventional Burnett equations and
the augmented Burnett equations were stable. Shock
profiles were obtained for both equations. Then, we
computed the same shock structure with more grid
points spanning the same length. The conventional
Burnett equations became unstable when the number
of grid points exceeded 87 for this case. Figure 4 is
the Mach number 8 temperature profile for the con-
ventional Burnett equations in Fiscko’s computations
when they became unstable. The figure shows that the
solutions of the conventional Burnett equations are un-
stable to numerical disturbances supported by the fine
grid. In contrast, the computations of the augmented
Burnett equations were stable for all the numbers of
grid points tested (up to 6000 grid points, the largest
number tested).

The maximum numbers of grid points for compu-
tational stability for the two equations are tabulated
below:

Equations | max(grid points) | min(5%)
Burnett 87 0.8
A-Burnett > 6000 < 0.01

The stability test showed that the conventional Bur- <

nett equations are unstable to short-wavelength pex-
turbations; the augmented Burnett equations stablize
the Burnett equations in the numerical computations
for shock wave structures.

It is important to note that whereas the fundamen-
tal instability of the conventional Burnett equations
could be circumvented by Fiscko in computations of
one-dimensional shock structure at any altitude, it can-
not be avolded in computations of the flow over a given
body at altitudes above a certain height. Shock compu-
tations are made with an essentially constant Az/A
somewhat greater than the minimum critical value for
stability. Both the shock thickness and the mean-free-
path Ay, increase proportionally with increasing alti-
tude, so that such computations apply to any altitude
no matter how high. For a body of fixed dimensions,
however, the grid spacing Az for a required resolu-
tion does not increase with altitude, but stays fixed;
hence Ax/A,, decreases steadily with increasing alti-
sude, eventually becomes less than the minimum criti-
cal value for stability at altitudes above a certain value.
The inherent instability of the conventional Burnett
equations must be avercome if practical computations
are to be made at high altitudes. Therefore the ang-
mented Burnett equations are needed to overcome this
difficulty.

Sheck Thickness Comparison

We next computed the argon shock wave structure
for Mach numbers ranging from 1.59 to 50.0. The
shock inverse density thickness of the augmented Bur-
nett equations were compared with Fiscko’s results of
the conventional Burnett equations and the DSMC.

Figure 5 shows the inverse density thickness of shock
waves at Mach numbers ranging from 1.59 to 50.0 for
argon gas. The inverse density thickness of the aug-
mented Burnett equations agrees well with Fiscko’s
Burnett results. As pointed out by Fiscko, the re-
sults of the Burnett equations are always closer to
DSMC than the Navier-Stokes equations. The results
show that the augmented Burnett equations maintain
the second order accuracy of the conventional Burnett
equations for computing shock wave structure.

6. Flows Pas{ Two-Dimensional Cylinders

We have extended the computations for the one-
dimensional shock wave structure to plane-two-
dimensional flows. The first problem was supersonic
and hypersonic flows past cylindrical leading edges. We
computed and compared the Navier-Stokes flow field
with the Burnett flow field using the same set of sur-
face boundary conditions. At the same time, we tested
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the computational stability of both the conventional
and augmented Burnett equations by computing them
with progressively refined meshes.

The Two-Dimensional Governing Equations

The conservation equations for two-dimensional
compressible flows with the rotational energy mode be-
ing in equilibrium with the translational mode and the
other internal modes being frozen are:

ou O 0G

0
o T or t 5y (55)
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For air, v = 1.4, Pr = .72 and the viscosity coeffi-
clent u was computed by the Sutherland relation.

For simplicity, thermal reactions and vibrational en-
ergy relaxation are not considered in this investigation,
since the Burnett terms affect only the contribution
of the translational molecular energy to the nonlinear
stress-strain tensor and heat-flux vector; and it is these
terms which primarily determine the stability or insta-
bility of the whole equation set.

The Navier-Stokes equations, the conventional Bur-
nett equations and the augmented Burnett equations
were computed for each case in order to compare one
with the other. The three equations are different only
in their constitutive equations. The constitutive equa-
tions of the Navier-Stokes equations are given by Eq.
(6) with n = 1; The constitutive equations of the con-
ventional Burnett equations are also given by Eq. (6)
with n = 2; and those of the augmented Burnett equa-
tions are given by Eq. (42).

The Numerical Method

Figure 6 shows a typical body-fitted computational
mesh for the flows. The finite volume method was
used in all the computations. In the figure, (£, 7) are
the curvilinear computational coordinates, where the
coordinates of the grid lines are € = 1,...,IL ‘and
n=1,--,JL.

In the computations, the governing equations and
constitutive equations in Cartesian coordinate (z,y,1)
were transformed into the curvilinear computational
coordinates (£, 7, r). The details of the transformation
are not presented in this paper, except the transfor-
mation equations for the first, second and third deriva-
tives appearing in the constitutive equations, which are
given in the appendix.

The implicit line Gauss-Seidel iteration method
proposed by MacCormack for the Navier-Stokes
equations[m was used to solve the Burnett equations as
well as the Navier-Stokes equations. The inviscid terms
were computed by the flux-splitting method and all
the viscous terms were computed by central differenc-
ing approximations. At each time step, the flow vari-
ables along n-grid lines were solved implicitly, which re-
quired the solution of a pentadiagonal matrix equation
simultaneously; while the £-direction terms were com-
puted by the line Gauss-Seidel iteration with alternat-
ing sweeps in the backward and forward £-directions.

The Boundary Conditions
Free stream conditions were specified along the top
boundary (3 = JL). Symmetry conditions were used
along the stagnation streamline (¢ = 1). First-order ex-
trapolation of the interior data was used to determined
the flow variables along the exit boundary (£ = IL)
For the boundary mesh points along the body surface

(n = 1), the flows vartables on the surface were com-
18, 19]

puted by the first-order Maxwell/Smoluchowski
slip boundary conditions (Cartesian coordinates):

2-7F 3 p 6T

w = A ik 69
and
n:qwﬁ;fﬁgéa (57)
where
j= 2 T
p V 8RT

The subscript s represents the flow variables on the sur-
face and T, is the temperature of the surface body. T is
the reflection coefficient and @ is the accommodation
coefficient. For this study, complete accommodation
was assumed, ie. , 7=l anda = 1.

In the case of the Burnett equations, evaluations of
the second and third order derivatives were needed on
the body surface. We used one-sided difference to evai-
uate these higher order derivatives on the surfaces.

At the present stage of this research, the same slip
boundary conditions were used for both the Navier-
Stokes equations and the Burnett equations. The ques-
tion of which particular set of surface boundary con-
ditions is the best, or the most appropriate, for the



Burnett equations is an important one, but is outside
the scope of the present paper.

It was noted that Tannehill and Eisler®® solved the
two-dimensional Burnett equations in 1976 for a hy-
personic flow over a flat plate with sharp leading edge,
which was the first two-dimensional attempt with these
equations. Their computations were necessarily re-
stricted to a coarse mesh because of computer limi-
tations at that time. The evenly spaced mesh sizes
in their computations corresponded to Az/A, = 4.8
and Ay/), = 1.9, which are larger than the minimum
value Az/A; = 0.8 for shock computation stability.
Therefore, their computations may not have run into
an instability problem because of the relatively coarse
mesh used. It is also noted that they used different sur-
face boundary conditions for Burnett (Schamberg[ml)

than for Navier-Stokes (Maxwell/Smoluchowski [19]),
and obtained results for Burnett that appeared worse
than for Navier-Stokes. In contrast, one-dimensional
hypersonic shock structure tests, which involve no un-
certainty about boundary conditions, have shown the
Burnett results to be much better than the Navier-
Stokes. The reason for this apparent difference is not
understood at present. It may or may not he associated
with boundary conditions.

Case I. { Low Altitude, M, = 4.0)

The flow conditions of the first case were the same
as those of the experimental test by Kiml22 123} o
supersonic air flow past a cylinder:

Mo = 40
Rewo = 9.1x10%
Kn, = 067 x10"?
where
Kig, = ==
r
Reo = PooUecT

Hoo
and r is the radius of the test cylinder.

Since Kny, € 1.0, the flow belonged to the con-
tinuum regime and therefore could be accurately de-
scribed by the Navier-Stokes equations (except in the
negligibly thin region within the bow shock wave). The
Burnett equations were expected to yield the same re-
sults as the Navier-Stokes equations. This case was also
a test case for our newly written two-dimensional im-
plicit computer code for the Navier-Stokes, the original
Burnett equations and the augmented Burnett equa-
tions.

The computational mesh for this case is shown in
Figure 6. The mesh lines are aligned with the boundary
surfaces and the predicted shock shape.

Figure 7 shows the results for the shape of the bow
shock wave. The experimental bow shock shape agrees
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well with the shape from the Navier-Stokes equations
and from the Burnett equations.

Figures 8 and 9 are the density and pressure dis-
tributions along the stagnation streamline. The re-
sults of the Navier-Stokes equations are compared with
those from the Burnett equations with the same surface
boundary conditions. The results of the two equations
are essentially the same except for slight differences in
the small region within the bow shock. This is because
the strong compression across the shock increases the
local Knudson number within the shock wave, hence
the magnitudes of the Burnett terms in the shock re-
gion increase.

Figures 10, 11,12 and 13 show the density and pres-
sure contours for the Navier-Stokes equations and the
Burnett equations. The corresponding contours of the
two sets of equations agree well with each other.

From these results, we see that the Burnett equations
give essentially the same results as the Navier-Stokes
equations at low altitudes ( Kn,, < 1)

We next computed the air flows of M, = 10.0 past
a cylinder of radius » = 0.02m. The computed cases
covered the whole continuum transitional regime from
low altitudes to high altitudes as follows: 0 km (sea
level}, 65 km, 75 km, 80 km, 30 km and 95km. The
corresponding free-stream Knudsen numbers were from
3.3 x 1075 to 2.3. In this paper, we present the two
typical cases: the flows at the altitudes of 75 km and
90 km.
Case II. {Attitude = 75km, M, =10.0)

The flow parameters for this case were

Altitude = 75 km
M, = 100
Kn, = 0.102
Re,, = 1679
r = 002 m
T, = 10000°K

The Kundsen number increased from .67 x 10-* of
Case | to K'n = 0.102 for this case, in which the flow
begins to depart from the continuum regime and enters
the transitional regime. The Navier-Stokes equations
become inaccurate and the Burnett solutions become
different from the Navier-Stokes solutions.

Figure 14 is the computational mesh of 40 x 62 grid
points for this case. Because the shock wave thick-
ness was a sizable part of the shock detachment dis-
tance, the grid was evenly spaced along the stagnation
streamline and the solid surface.

Stability of the Burnett equations: The computa-
tions for the conventional Burnett equations and the
augmented Burnett equations were stable for this case
with the 40 x 62 grid points mesh. The free-stream
Kundsen number based on the minimum grid size was
Knareo = 8.1. When we refined the mesh by in-
creasing the number of grid points to 78 x 122 within



the same computational domain, the computations for
the conventional Burnett equations became unstable,
while the computations for the augmented Burnett
equations remained stable. Therefore the approximate
maximum Knaz. for two-dirnensional conventicnal
Burnett equations computations to be stable is near
Knazo = 8.1. The computations in this case as
well as those in the following cases showed that the
augmented Burnett equations stablize the conventional
Burnett equations in two dimensions.

The Burnett Flow Field Compared with the Navier-
Stokes Flow Field: Tigures 15, 16 and 17 are den-
sity, velocity and temperature distributions along the
stagnation streamline. In both figures, the results
of the Navier-Stokes equations, the conventional Bur-
nett equations and the augmented Burnett equations
are plotted on the same figures. The difference be-
tween the Burnett equations and Navier-Stokes equa-
tions are evident, especially for the temperature dis-
tribution across the shock. Meanwhile, the results of
the augmented Burnetit equations agree well with the
conventional Burnett equations. Hence, the augmented
Burnett cquations do maintain the accuracy of the con-
ventional Burnett equations when the solutions of the
later equations are possible.

Figurcs 18, 19, 20 and 2! show the density and
temperature contours for the Navier-Stokes equations
and the Augmented Burnett equations. The two-
dimensional augmented Burnett equations result in a
thicker bow shock wave.

Case I11. {Attitude =90 km , M = 10.0)
The flow parameters for this case were:

Altitude = 90 km
M, = 100
Kne = 1.185
Re,, = 149
r = 0.02m
T, = 10000°K

The Kundsen number was 1.185 and the flow was
well into the continuum transitional regime in this case.
The Navier-Stokes equations are inaccurate and the
Burnett solutions become significantly different from
the Navier-Stokes solutions.

A computational mesh for this case was similar to
Figure 14 with 40 x 142 grid points. The minimum
mesh size was the same as that of Figure 14. A larger
computational domain was used because the bow shock
wave stretched farther upstream for the large Kundsen
number flow.

Stability of the Burnett equations: The computa-
tions for the Navier-Stokes and the augmented Bur-
nett equations were stable, whereas the computations
for conventional Burneit equations were unstable. The
free-stream Kundsen number based on the minimum
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grid size was Kngar = 94.8. These results showed
the augmented Burnett equations stablize the conven-
tional Burnett equations in two dimensions, up to very
high altitudes.

The Burnett Flow Field Compared with the Navier-
Stokes Flow Field: Figures 22, 23 and 24 are density ,
velocity and temperature distributions along the stag-
nation streamline. The difference between the aug-
mented Burnett equations and Navier-Stokes equations
become significant in this case, especially for the tem-
perature distribution across the shock. This may have
a significant effect on properties sensitive to flow field
details, such as radiation heating.

Figures 25, 26, 27 and 28 show the density and
temperature contours for the Navier-Stokes equations
and the Augmented Burnett equations. The two-
dimensional augmented Burnett equations result in
much thicker bow shock wave.

7. 2D Hypersonic Flow Past a Double Ellipse

In this section, we computed hypersonic M., = 25
air flows past a double ellipse geometry in the tran-
sitional regime. The same problem was computed by
Feiereisen!®!] using the particle simulation method of
Baganoff. In Feiereisen’s computations, hard-sphere
model and a rotational nonequilibrivm model of col-
lision number 2 werc used. We used the same mod-
els to compute the flow and compared the results of
the Navier-Stokes equations and the Burnett equations
with Feiereisen’s.

The case had very low T, and a cold wall, therefore
the vibrational mode of the air flow was assumed to be
frozen and only translational and rotational noneqni-
librium needed to be considered for this case.

Though the Burnett equations were derived for the
monatomic gas only, Lumpkin[m} demonstrated that
the Burnett equations plus rotational nonequilibrinm
model provide satisfactory shock wave structure for a
diatomic gas such as nitrogen. Therefore, we used the
Burnett equations for both the viscous stress and trans-
lational heat transfer and used first order equations for
the rotational heat transfer.

The Governing Equations
The conservation equations for the two-dimensional
flows with rotational nonequilibrium are:
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and 7T is the translational temperature; T, is the ro-

tational temperature. The stress o;; and translational

heat transfer g; are given in the preceding sections.
The rotational heat flux terms g,; are as follows:

T,
8z,~ '

where the rotational heat conductivity %, and trans-
lational heat conductivity & for diatomic gases are ap-

ri = —HKy

(59)

proximated by the Eucken’s relation[®®:
K = Ducy:/2
{ oz ucv:z/ (60)

Like the particle simulation by Feiereisen, we used
hard-sphere gas model in the computations. The vis-
cosity for hard-sphere gas is:

T05
H = Ho (ﬁ) .

The {ollowing rotational relaxation model was used
in the computations:

(61)

Cor (T— T;-)
- —_— 2
2R Te (62)
with
_ T
7. = ros
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and

ZR=2

where the rotation collision number Zg was the same

as in the particle simulation.

The Numerical Method and Boundary Conditions
The same rumerical method and boundary condi-
tions as in Section 6 were used in the computations,
with slightly different surface-slip boundary conditions
because of the rotational nonequilibrium. The first-
order Maxwell /Smoluchowski slip boundary conditions

were extended to rotational nonequilibrium[m] as fol-
lows (Cartesian coordinates):
2-F- 0u 3 u 0T
= {{— - (.
w = 2T+ 4G (63)
_ 22— 3?\’4 (3T
Ty = Ty + = m—a-; (64)
2—w 2x, 0T,
Te = Tot == o2 By (62)
where
- 8RT
= .
T

In the computations, complete accommodation surface N~

was assumed, ie.,, T = 1 and & = 1, which were the
same as it the particle simulation.

Case IV. : Double Ellipse Flow ( M.,
Angle of Attack = 30°)
The flow conditions of the case were:

25.0,

M, = 250
Knge = 0.28
Angle of Attack = 30°
doo = 105%x107°m
T = 135°K
Tw = B6200°K
Nose Radius = 0.00375 m

Figure 29 shows the body-fitted computational grid
of 68 x 62 grid points for the double ellipse geometry.

Stability of the Burnett equations: The computa-
tions for the Navier-Stokes and the augmented Bur-
nett equations were stable, while the computations for
conventional Burnett equations were unstable. These
results again showed that the augmented Burnett equa-
tions stablize the conventional Burnett equations in
two dimensions.

The Burnett Flow Field and the Navier-Stokes Flow
Field Compared with the Particle Simulation: Figures
30, 31 and 32 are density, velocity and translational
temperature distributions along the stagnation line.
The results are compared with the particle simulation



results. In both figures, the results of the augmented
Burnett equations agree better with those of the par-
ticle simulation than those of the Navier-Stokes equa-
tions. The results indicate the Burnett equations to
be more accurate than the Navier-Stokes equations. It
should be pointed out that the difference between the
Navier Stokes flow field and the Burnett flow field is
not large because the Kundsen number of the flow was
about 9.28 and the artificial hard-sphere model was
used in the computations. Still the two-dimensional
augmented Burnett equations result in a thicker bow
shock wave and agree very well with the particle sim-
ulation results.

Figures 33 shows the rotational and translational
temperature along the stagnation line. The rotational
temperature lags behind the translational temperature
across the shock wave.

Figures 34, 35, 36 and 37 are the density and transla-
tional temperature contours for the case. The density
contours of the angmented Burneti equations and the
Feiereisen’s results are plotted together for comparison.
The figures show the density and temperature contours
for the Augmented Burnett equations agree well with
the particle simulation results.

8. Conclusions

A new set of equations termed the “augmented Bur-
nett equations” has been developed which overcome
the instability of the conventional Burnett equations
to small wavelength perturbations. We have computed
both 11 shock wave structures and 2D flows past blunt
leading edges using the new equations. The analytical
analysis and numerical test cases have demonstrated
the following properties of the new equations:

1. The augrmented Burnett equations are always sta-
ble in the theoretical analysis as well as in both the
1D and 2D numerical computation tests produced
to date.

2. The new equations maintain the same accuracy as
the conventional Burnett equations.

3. At low altitudes (Kn < 0.1 ), the difference be-
tween the 2D computational results of the Burneit

equations and those of the Navier-Stokes equations
is small.

4. At high altitudes (Kn = O(1) ), the difference be-
tween the 2D computational results { especially T
) of the Burnett equations and those of the Navier-
Stokes equations is significant, which makes it
preferable to use the Burnett equations instead of
the Navier-Stokes equations in this regime. Bur-
nett CFD appears to be especially important for
predicting aerodynamic parameters sensitive to
flow-ficlid details, such as radtation.

13

5, Computation times with the Burnett equations are
only modestly greater than Navier-Stokes with the
same grid system; The Burnett solutions required
about 40-percent more CPU time than Navier-
Stokes for both the 1D and 2D flows investigated.
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10. Appendix

The Derivative Transformation Equations
The equations of the grid transformation are:

z = z(&n7)
v = wénrT) (66)
{f = T

The transformation equations for the derivatives from
curvilinear coordinates (£,n,7) to Cartesian coordi-
nates {x,y,¢) can be derived by the chain rules.

The first-order derivative transformation equations
are:

g a d
_— = = —— 67
Ox ¢ ae +é dn (67)
a 8} a
—_— = e —- 68
dy ¢ a¢ +d dn (68)
where

a = y./J

b = —yg/.]

c = —r,/J

d = Z‘E/J

J = Ieyp — Tale

The second-order derivative transformation equa-
tions are:

5% = 2;;+2aba§;n b2 —8%-4'

s g7 +be 3 (69)
af;y = ;1,2 + (ad + bc) 6;

bd ;; +eq {fg +d, a (70)
ai:'f = c25;+2d8?; d2%+

cy gé— +dy —% (71)
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ing wavelength.
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Figure 4: Shock temperatuzre profile in Fiscko’s compu-
tations of the Burnett equations when the instability
started. ( Maxwellian gas M =8 )
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Figure 5: Argon shock wave inverse density thickness.
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Figure 6: Computational mesh for Case I: M, = 4.0,
Kne = 0.67 x 1074
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Figure 7: The bow shock shape for Case I M., = 4.0,
Kno = 0.67 x 107
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Figure §: Density along stagnation streamline for Case
I: Moo = 4.0, Kng, = 0.67 x 1074,
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Figure 9: Pressure along stagnation streamline for Case
I Mo = 4.0, Kny = 0.67 x 1074,



Figure 10: Navier-Stokes normalized density contours  Figure 13: Burnett pressure contours for Case I: M, =

for Case 1: M.o = 4.0, Kneo = 0.67 x 107%, 4.0, Kne = 0.67 x 1074
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Figure 11; Burnett normalized density contours for  Figure 14: Computational mesh for Case IT: M, = 10,

Case I: Mo = 4.0, Kng = 0.67 x 10-% Kng = 0.1 and Altitude = 75 km.
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Figure 12: Navier-Stokes pressure contours for Case I:  Figure 15: Density along stagnation streamline for
e Mo =40, Kne =067 x 107% Case II: My = 10, Kne = 0.1 and Altitude = 75 km.
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Figure 18: Velocity along stagnation streamline for
Case II: M = 10, Kne = 0.1 and Altitude = 75 km.
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Figure 17: Temperature along stagnation streamline
for Case II. My = 10, Kne = 0.1 and Altitude =
T5km.
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Figure 18; Navier-Stokes density contours for Case IL:
Mo = 10, Kne = 0.1 and Altitude = 75 km.
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Figure 19: Augmented Burnett density contours for
Case II: M, = 10, K ne = 0.1 and Altitude = 75 km.
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Figure 20: Navier-Stokes temperature contours for
Case I M, = 10, Kne = 0.1 and Altitude = 75 km.
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Figure 21: Augmented Burnett temperature contours
for Case II: My = 10, Kn, = 0.1 and Altitude =
75 km.
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Figure 22: Density along stagnation streamline for
Case [II: M, = 10, Kny = 1.2 and Altitude = 90 km.
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Figure 23: Velocity along stagnation streamline for

Case [1[: M, = 10, Kng = 1.2 and Altitude = 90 km.
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Figure 24: Temperature along stagnation strearnline
for Case [II: M, = 10, Kny, = 1.2 and Altitude =
90 km.
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Figure 25: Navier-Stokes density contours for Case IIL:
Mo =10, Kfny = 1.2 and Altitude = 30 km.
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Figure 26: Augmented Burnett density contours for
Case [1l: Mo, = 10, Kne = 1.2 and Altitude = 90 km.
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Figure 27: Navier-Stokes temperature contours for
Case I[Il: Mo, = 10, Kng = 1.2 and Altitude = 90 km.



Figure 28: Augmented Burnett-temperature contours
for Case III: Mo, = 10, Kn, = 1.2 and Altitude =
90 km.

2 =
5 é?y
3L
[~3
GRID: 68 x 62
8L
o
3L
_ [=]
E
> 8
8t
(a4 P
a
o b
2 L -
= g
> y
2L
=] B
0.10 008 -0.08 004 002 00 .02 004

X m}

Figure 29: Computational Mesh for Case IV: M, =
95, Angle of Attack = 30° and A, = 1.05 x 1073,
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Figure 30: Density along stagnation streamline for
Case IV: Mo = 25, Angle of Attack = 30° and
oo = 1.05 x 1073, -
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Figure 31: Velocity along stagnation streamline for
Case IV: Mo = 25, Angle of Attack 30° "and
Ao = 1.05 x 1073,
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Figure 32: Translational temperature along stagnation
streamline for Case IV: M., = 25, Angle of Attack =
30° and Ay = 1.05 % 1073,
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Figure 33: The rotational and translational tempera-
ture along stagnation streamline for Case 1V: M, =
25, Angle of Attack = 30° and A, = 1.05 x 1072
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Figure 34: Augmented Burnett density contours for Pigure 36: Particle simulation density contours by
Case IV: M, = 25, Angle of Attack = 30° and A, = Feiereisen for Case [V: My = 25, Angle of Attack =
1.05 x 10673. 30° and Ay = 1.05 x 1073,
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Figure 35: Augmented Burnett translational tem- Figure 37: Particle simulation translational tempera-
perature contours for Case IV: M, = 25, ture contours by Felercisen for Case IV: M, = 25,
Angle of Attack = 30° and Ay, = 1.05 x 1072 Angle of Attack = 30° and A = 1.05 x 1073,
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