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A b s t r a c t  

It is shown from both analytical investigation and 
numerical computations that the 1D and plane-2D 
Burnett equations are unstable t o  disturbances of small 
wavelengths. This fundamental instability arises in nu- 
merical computations when the grid spacing is less than 
the order of a mean free path, and precludes Burnett 
flow-field computations above a certain maximum al- 
titude for any given vehicle . A new set of equations 
termed the "augmented Burnett equations" has been 
developed, and shown t o  be stable both by a linearized 
stability analysis and by direct numerical computations 
for 1D and 2D flows. The latter represent the first 
known Burnett solutions for 2D hypersonic flow over 

w' a blunt leading edge. Comparison of these solutions 
with the conventional Navier-Stokes solutions reveals 
that the difference to be small at low altitudes, but 
significant at high altitudes. Burnett CFD appears to  
be especially important for predicting aerodynamic pa- 
rameters sensitive to  flow-field details, such as radia- 
tion, at high attitudes. 

1. I n t r o d u c t i o n  

A number of advanced hypersonic vehicles are antic- 
ipated to  operate in the continuum transitional regime 
a t  high altitudes where the thickness of the bow shock 
waves is a sizable or dominant part  of the shock detach- 
ment distance. Under these conditions, CFD codes for 
the flow past the vehicles must compute through the 
structure of hypersonic shock waves. However, it has  
long been known that  the conventional Navier-Stokes 
equations are inaccurate for this purpose, and hence we 
need to develop some other set of constitutive equa- 
tions, more advanced than Navier-Stokes, to provide 
realistic continuum-flow computations for hypersonic 
flows at these high altitudes. 

The development of an advanced set of continuum 
equations of motion is necessary for certain practical 
applications. Aeroassisted vehicles such as the AOTV 
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and the AFE operate mainly at  altitudes in the contin- 
uum transitional regime. Anticipated applications here 
would be to their aerodynamic stability and heating 
parameters as well as to  flow-field radiation. A simi- 
lar situation exists for some Mars return vehicles that  
would use high-altitude aerobtaking to change orbit. 
Still other applications involve certain aerothermody- 
namic computations for the upper portion of the ascent 
trajectory of vehicles such as the NASP which have 
cowl lips and leading edges with  relative!^ small radius 
of curvature. These are subjected to  very severe heat- 
ing rates in the continuum transitional regime where 
the numerical computations using the Yavier-Stokes 
equations are inaccurate. Additional relevant appli- 
cations are to  hypersonic flow-field radiation at  high 
altitudes, which can be important both to the heat- 
ing rate on vehicles such as the AOTV, as well as to 
the hard-body radiation signature of a missile traveling 
through the upper atmosphere. 

It is noted that a completely different approach to 
that  investigated herein for circumventing the inaccu- 
racy of Navier-Stokes C F D  is to use particulate-flow 
computations such as the DSMC method of Bird['] and 
the particle simulation method of Baganad'' This 
type of flow simulation, however, can require relatively 
large amount of computer time, especially at lower al- 
titudes. Hence the development of an advanced set 
of continuum equations having a reasonable accuracy 
should be much more comvutationallv efficient. 

In order to  develop the advanced set of constitutive 
equations, Fiscko and Chapmani4. '1 reinvestigated and 
proposed the Burnett equations[6], which are higher or- 
der approximations to  the Boltzmann equation than 
the Navier-Stokes equations. They found that the 
Burnett equations provide much greater accuracy than 
the Navier-Stokes equations for one-dimensional shock 
wave structure in monatomic gases. Aowever, both 
an analytical analysisrq and the past computational 
experience[*] showed that  the Burnett equations are 
unstable to  very small wavelength disturbances en- 
countered in fine-mesh numerical solutions. This un- 
stability makes it impossible to apply the Burnett equa- 



tions to practical flows in two and three dimensions 
above a certain altitude for any vehicle. Therefore, we 
need to overcome the instability of the Burnett equa- 
tions in order to apply the equations to practical flow 
problems. 

Guided by the linearized stability analysis, this pa- 
per will develop a new set of equations termed the 
“ augmented Burnett equations” to stablize the con- 
ventional Burnett equations. We will show that the 
augmented Burnett equations are stable and yield es- 
sentially the same results as the  conventional Burnett 
equations when stable solutions exist for the later equa- 
tions. T h e  new set of equations has been tested by a 
theoretical stability analysis as well as 1D and 2D flow 
computations following the objectives below. 

The Research Objectives 

1. To develop augmented Burnett equations which 
overcome the instabilities encountered when fine- 
mesh computations are attempted with the coil- 
ventional Burnett equations. 

2.  To test the computational stability of both the 
conventional Burnett equations and the aug- 
mented Burnett eqnaiions by solving them numer- 
ically with progressively refined meshes for both 
one-dimensional hypersonic shock structure, and 
two-dimensional flows past a blunt leading edge. 

3.  To test the accuracy of the augmented Burnett 
equations by comparing their results with the ex- 
isting experimental data and the DSMC results on 
hypersonic shock structure in argon. 

4 .  To compare the twc-dimensional Burnett flow field 
with the corresponding Navier-Stokes flow field us- 
ing the same set of surface boundary conditions; 
Also to compare the computational results of the 
two equations with existing experimental data and 
DSMC results. T h e  two test cases computed are: 

Supersonic and hypersonic flows past cylin- 
drical blunt leading edges at  both low and 
high altitudes; 

Hypersonic flows with rotational nonequilib- 
rium past a double-ellipse-shaped blunt body. 

2. Tlie Governing Equations 

We first consider the one-dimensional governing 
equations Cor stability analysis and Cor shock wave 
structure computations. The mass, momentum aiid 
energy conservation equations for a compressible vis- 
cous flow without rotational, vibrational and chemical 
nonequilibrium are as follows: 

dU aF - + - = o  
at ax 

where 

U = (  p:.), v 

P=Pm, 

U2 

2 e = p (c,T + -) 
and u l l  and q1 are the viscous stress and thc heat flux 
terms, of which the relations with the gradients of the 
flow variables are termed the constitutive equations. 

Eq. (1) together with t h e  two constitutive equations 
for 611 and y1 given in the next section form a complete 
set of governing equations for the one-dimensional gas 
flow. 

3. The Constitutive Equations 

Tlie gas flow regime can be characterized by tl ic 
Kundsen number Kn,  which is defined as: 

(2) 
x 

K n  = - 
L 

t..d’ where X is the mean free path and L is the macroscopic 
characteristic length of the flow. When ICn increases 
from 0 through the order of 1 to 03, the gas flow changes 
from the translational equilibrium regime through the 
transitional regime to the Cree molecule regime. 

The constitutive equations for a gas flow of small I<n 
can be derived as approximate solutions of t,he 13olta- 
mann equation, which is accepted as the general gov- 
erning equations for gas at  any K n .  The Boltaman 
equation is solved by a successive iteration mcthod, 
Le. the Chaprnan-F,nskogmethod[61, which leads to the 
following general three-dimensional constitutive equ* 
tions: 

where i x 1 , 2 , 3  and j = 1 , 2 , 3  and the superscript 
numbers represent the order of accuracy of the ~0111- 
tions. 

When I i n  $;: 0, only the first terms in the equations 
are needed and we obtain the zero-order Euler q u a -  
tions, i e., 
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As K n  increases, the flow departs from the equilib- 
rium regime. Hence more and more high order t e r m  
in Eq. (3) become significant and are needed to solve 
the flow equations accurately. 

When the gas flow departs slightly from equilibrium 
(Kn < 0.1 ), we only need t o  retain the first two 
terms and obtain the first-order Navier-Stokes equa- 
tions, which contain the first-order derivatives of the 
flow variables in the constitutive equations; As K n  be- 
comes larger, we need to  retain the first three terms 
and obtain the sccond-order Burnett equations, which 
contain the second derivatives and the products of the 
first derivatives; Similarly, the third-order solutions are 
the super Burnett equations; and so on. 

Therefore, the constitutive equations of the ntli or- 
der approximation are: 

w1 
w2 

where n represents the level of approximations, Le., 

IL = 1 
n = 2 
n = 3 

the Navier-Stokes equations 
the Burnett equations 
the super Rurnctt equations 

The  detailed expressions for cr$) and qjn) are given 
as follows (n  = 1 , 2 , 3 )  : 

The First-order Solutions 
The  general expressions for oij (1) and qi (1) are: 

1013 4.056 
2 2.028 

(7) 

W 6  

Q1 
Q2 

where a bar over a derivative designates a nondivergent 
symmetrical tensor, i.e., 

& - j A k k  i f i = j  
2 z= { 

A.i+Ajl 2 i f i # j  

and 

A k k  = Al l  + A22 + A33.  

In one dimension, the general expressions reduce to  8 7.424 
7518 11.644 
-4518 -5.822 

In two dimensions, the general expressions reduce to  

(11) 

(13) 

2 = - 3 P  (UZ + VU) - 2P Ur I 

.I;) = crp = -p(uv + u s ) ,  (12) 

&' = 5 P  (.Z + 0 9 )  - 2P VY 

q p  = -KT,, (14) 

411) = -nT, (15) 

2 

and 

where ( )= = & and ( )y = a . 

The Second-order Solutions 
The general expressions for cr&?) and qj2) '1: 

83 
04  

05 

(16) 
1 a p a T  + wq --- a2T 

+ w 3  R- axiaxj PT azi ax, 
R B T F  

+ w 5  ----+wwg - - ~a~~ a x j  

-3 -3.090 
3 2.418 

11714 25.157 

and 

(17) 
1 2 a auk auk aT 
T 3axi a X k  + 82 -[ --(T-) + 2-- axi a X k  ] 

+ 83 i a p %  + oq -(-) a -  
P a x k  az, a x k  axi 

+ Q 5  LE";;} ~ a , ,  ax; 
where the numerical constants wi and 8; are computed 
by the Chapman-Enskog method, depending on the gas 
molecular repulsive force models[g] used. So far, only 
the coefficients for two extreme cases, the hard-sphere 
model and the Maxwellian model ( F x r5 ), are 
computed as follows: 

3 2.418 
0.681 

ws 3 0.219 I 
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Since the molecular model for a real gas falls in be- 
tween the two extreme cases above, Lumpkin["] fol- 
lowing Woods[". used values of wi and 8i for real 
gases interpolated linearly in the temperature-viscosity 
exponent ( w )  from the data  above. 

In one dimension, (16) and Eq. (17) reduce to 
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4. Stabi l iza t ion  of the B u r n e t t  E q u a t i o n s  

For gas flows in the continuum transitional regime 
where K n  is the order of one, the Navier-Stokes e q u a  
tions become inaccurate. The  second-order Burnett 
equations are needed as the constitutive equations to  
circumvent the inaccuracy of the Navier-Stokes equa- 
tions. The  necessity of using the Burnett equations 
has been demonstrated by Fiscko and Chapman[47 51. 
They found that the Burnett equations are significantly 
more accurate than the Navier-Stokes equations for hy- 
personic shock wave structure in monatomic gases. 

However, the Burnett equations are known to be un- 
stable when solved by numerical methods using fine 
meshes. The  unstability of the equations can be shown 
by a linearized analysis. The analysis was reported 
by B o b y l e ~ [ ~ ]  in 1982. In this section, we first repeat 
the stability analysis of Bobylev t o  show that the soln- 
tions of the Burnett equations are exponentially unsta- 
ble to periodic perturbations when the wavelengths of 
the perturbations are shorter than some critical length 

- 

' y1 = e i + % ? 2 + 2 0 3 +  205 
yZ = e1 - 303-  1 9 9  ++ 302 
y3 = 2e2+;84 

yS = g e 4 + 2 8 2  
74 = 504 

y7 = p + T 8 5  T 
y6 = z e 2 + - 0 5 + $ ~  ? 

ya = $3 

xo = $63 
, 711 = 563 

7s = - I83  3 

of the order of the mean free path. Then, the same 
method of analysis is used to  show that the Burnett 
equations plus some linear higher-order terms are al- 
ways stable to  small perturbations. These " augmented 
Burnett equations " are proposed in order to  solve the 
conventional Burnett equations for practical problems 
numerically and to  retain the accuracy of the conven- 
tional Burnett equations. 

The  Conventional Burnett Equations Are Unstable 
We consider a simple one-dimensional problem: the 

response of a uniform monatomic gas to  a small peri- 
odic perturbation wave. The  initial gas variables are 
p = PO,  T = To, u = uo = 0. Since the perturbation is 
weak, the general one-dimensional governing equations 
(1) can be linearized to  the following equations of small 
disturbances: 

Pt + PUa = 0 

where u is the linearization of 611 and q is the lineariza 
tion of q1 in Eq. (6). 

For the Burnett equations for Maxwellian gas, the 
linearized terms u and q are: 

(31) P2 4 = -KTz - ( 7 3 u z z  ) .  
P 

2 where a7 = 3, ag = -2 and y3 = - 2  for the 
Maxwellian gas. 

We introduce the following non-dimensional vari- 
ables for the equations from Eq. (27) to (31): 

3 4 

P: = ( P -  P 0 ) l P O  

1: = t / ( / l o / p o )  

T (T - To)/To 
(32) us = u / m  i x = x / L o  

where Lo = p o / ( p o m  is the characteristic length 
which is related to the hard-sphere mean free path (A)  
of the gas by 

Lo = 0.78 A .  
Substituting Eq. (32) into the equations from Eq. 

(27) to (31) leads the following non-dimensional per- 
turbation equations: 

0 1 0  

at' 

(33) 
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where 

v ’ = {  i }  (34) 

and 

I 15 aT’ 7 8’u’ 
Y = - - - - z - j - p  4 ax 

Assume the solutions of Eq. (33) with the initial per- 
turbation Vi = 7 eiwr’ to be: 

(37) I/’ = f7 p r ’  , e+ I’ 

where the variable w is the uon-dimensional circular 
frequency of the periodic perturbation wave which has 
tlic following relation with wavelength L:  

The exponent 4 represents the response of the govern- 
ing equations to the perturbation and can be written 
as 

d = n + 4 i  

where ct and @ are real numbers, and a represents the 
attenriation and B represents the dispersion. The con- 
dition for the Eq. (3 i )  to he stable is: 

O < O .  (39) 

Suhstitutiug Eq. (37) into Eqs. ( 3 3 ) ,  (35) and ( 3 6 )  
leads to  tlie following equation of characteristics for the 
nurnett. equations: 

~(4,;’) = 18 43 + F9w2 4’+ 
( 3 0 ~ ’  + 97w4 - 14w6) 4 + 
(45w4 + 60w6) 

= o .  (40) 

The equation above can be solved numerically t.o ob- 
tain 

(41) 
x 
L 4 = /(w) = f(4.92 -) . 

From this equation, we can plot the trajectories of 
4 = a + 0 i in the complex plane as I, decreases 
from +cc to 0 ( K n  increases from 0 to +cc) in Figure 
1, which also contains the trajectories for the Navier- 
Stokes equations obtained by the same method. 

In Figure 1, the trajectories of the Navier-Stokes 
equations are always in the stable region (ct 5 0) and 
move towards the negative o( direction as L decreases. 
This means that the Navier-Stokes equations provide 

more attenuation as the wavelength of the  perturbation 
decreases, which is intuitively obvious. 

On the other hand, two branches of the trajectories 
of the Burnett equations go into the unstable region 
(0 2 0) when L 5 L,,, (Lc7  = 2.04X for Maxwellian 
gas), i.e., if the wavelength is smaller than I,,,, the 
Burnett equations become unstable. 

A stability analysis for the two-dimensional Burnett 
equations also leads to the same results as those of the 
one-dimensional Burnett equations. The dotted lines 
in Figure 1 are also the characteristic trajectories of 
the two-dimensional Burnett equations responding to 
a perturbation propagating in an arbitrary direction. 
Therefore, the two-dimensional Burnett equations are 
also unstable to a disturbance of small wavelength. 

The Augmented Burnett Equations Are Stable 
From the preceding analysis, the Burnett equations 

are unstable to small-wavelength perturbations. Our 
goal is to stablize the Burnett equations so that the 
new equations meet the following requirements: 

1. Be stable in the linearized stability analysis 

2 .  Be as accurate as the conventional second-ordcr 
Burnett equations. 

To  satisfy the second requirement, we can only add 
higher order t e r m  to stablize the conventional Bur-  
nett equations. The most natural choice would be the 
complete super Burnett equations. However, the SII- ‘d’ 
per Burnett equations, like the Eurnett equations, are 
also unstable to small perturbations wheii the wave- 
lengths are smaller than some critical value. Figure 2 
is the characteristic trajectories of the super Burnett 
equations for a Maxwellian gas. One branch of the 
trajectories enters the unstahle region when L is small. 

Therefore, we augment the Burnett equations with 
some terms of third-order derivatives which have the 
same forms as those in the super Burnett equations 
but have different coefficients. The Burnett equations 
plus the augmented terms form the new constit,utive 
eqiiatioris named “the augmented Burnett equations” 
a s  follows: 

(4‘4 

where the oj;), .I;”’, qj’)  and y;’’ are given by Section 
3 ;  ojp’ and yi“’ are the augmented terms. 

One-dimensional n$(;) and yia) are: 
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where the coefficients w7, 8s and 07 of the augmented 
terms are so selected that  the new augmented Burnett 
equations are stable by linearized analysis. The coefi- 
cients are chosen to  be those of Wang-Chang['51 for a 
Maxwellian gas: 

./ 

(45) 

We obtain the characteristic equation for the 
one-dimensional augmented Burnett equations for 
Maxwellian gas as follows: 

23 49 
6 72 P ( A W 2 )  = 43 + (-w2 + -w4) ,+Pi 

15 97 7 6 11 
(--w2 + -w4 + -w + -d) 4 + 

5 4 101 6 3 
9 18 18 108 

( 2 w  + -w +-we)  24 9 
= O .  (46) 

Figure 3 is the characteristic trajectories for the aug- 
mented Dixnett equations. The  trajectories of the new 
equations are always in the stable region. Thercfore, 
the augmented Burnett equations are stable. 

General ui;"' and qi"' 

We have generalized the one-dimensional augmented 
terms in Eq. (43) and Eq. (44) to  the following general 
expressions: 

kJ 

Y 

where w7, 0s and 87 are given by Eq. (45) 

Two-dimensional u:;"' and q!'): 

From the general expressions above, we obtain the 
two dimensions terms as follows: 

3 de) - ( w7 RT ur.. + w7 RT uzYy 1 1  - p 2  

RT VYYY ) 3 (49) 
w7 w7 RT vzzy - - 
2 2 

- -  

,(Q) - ( 0 )  
12 - 0 2 1  

P3 3w7 3w7 
P2 4 = - ( y- RT uZey + - RT uyyy 

3w7 3w7 + - RT Vzyy + - RT vrrr ) , (50) 4 4 

3 
&4 - Ir 

P2 
2 2  - - ( ~ 7  RT vyYy + w7 RT vcZy 

R T u z x z )  (51) 
w7 w7 RT uzYy - - 
2 2 

-- 

and 

RT RT 
BS - P ~ z z r  + 0s - P ~ z y y  ) , (52) 

RT RT 
P P 

8s - ~ y y y  + OS - PZZY 1 .  (53) 

A stability analysis for the two-dimensional aug- 
mented Burnett equations shows that they have the 
same characteristic trajectories as the one-dimensional 
case (Figure 3), hence they are stable for all wave- 
lengths. 

The stability analysis so far has been for the simplest 
linear one-dimensional case only. But the nonlinear 
terms in the Burnett equations are important in most 
of the practical hypersonic applications. Therefore the 
linearized stability analysis provides only the necessary 
stability condition for the nonlinear Burnett equations. 
Whether the nonlinear augmented Burnett equations 
are stable in practical computations needs to  be tested. 
We will test the stability properties of both the conven- 
tional Burnett equations and the augmented Burnett 
equations for practical numerical computations by pro- 
grcssly refining the computational meshes. 

5 .  Hyperson ic  Shock W a v e  S t r u c t u r e  

We have computed the hypersonic shock wave struc- 
ture in a monatomic gas for the conventional Burnett 
equations and the augmented Burnett equations t o  test 
the stability of both equations and to  compare their re- 
sults with those by F i ~ c k o [ ~ ]  

The governing equations for this problem were given 
in Section 2. The computations used uniformly spaced 
grids. The upstream boundary conditions were speci- 
fied and those in the downstream were determined by 
the Rankine-Hugoniot relations, hence the question of 
which boundary conditions are appropriate for the Bur- 
nett equations was avoided. Since the nonlinear Bur- 
nett  terms became important only in the strong shock 
wave structure, the problem provided a good test for 
both the accuracy and the stability of the nonlinear 
Burnett equations. 

For comparison purpose, the same flow conditions 
as F i ~ c k o [ ~ ]  were used in the computations, ie . ,  a 
monatomic gas with the molecular weight of argon was 
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computed for a shock wave with the following param- 
eters: 

T, = 30OoK 
p -  = l a t m  
Pr = 2J3 

y = 513 (54) 
P = P Q  (T/ToIW 

po = 0.00002272 Ns/m2  
To = 300OK 

where w depends on the  molecular model used in the  
computations. We used the same n = 10 exponential 
repulsive molecular force model as Fiscko's for gas ar- 
gon; the resulting w was as follows: 

W 1 .0 I 0.72222 1 0.5 

An implicit flux-splitting method[I61 was used to 
solve the governing equations. The nonlinear terms 
and higher order derivative t e r m  in the conventional 
Burnett equations and the augmented Burnett equa- 
tions were also treated implicitly, which required solv- 
ing a penhliagonal matrix equations simultaneously 
for each time step. The details of the numerical for- 
mulation for the Burnett equations are not presented 
in this paper because of the page limitation. 

Stability Test 
We tested the stability of the conventional Burnett 

equations and the augmented Burnett equations by 
progressively refining the computation mesh (increns- 
ing the number of grid points within a fixed Icogtli). 
The computations were made for a Mach 20 shock wavc 
in Maxwellian gas since this gas model had exhibitcd 
the most severe instabilities in Fiscko's work. 

We started the computations for the shock struc- 
ture from a 20-grid-point coarse mesh. The computa- 
tions for both the conventional Burnett equations and 
the augmented Burnett equations were stable. Shock 
profiles were obtained for both equations. Then, we 
computed the same shock structure with more grid 
points spanning tlie same length. The conventional 
Burnet,t equations becanre unstable when the number 
of grid points exceeded 87 for this case. Figure 4 is 
the Mach number 8 temperature profile for the coil- 
ventiohal Burnett equations in Fiscko's computations 
when they became unstable. T h e  figure shows that the 
solutions of the conventional Burnett equations are un- 
stable to numerical disturbances supported by the fine 
grid. In contrast, the computations of the augmented 
Burnett equations were stable for all the numbers of 
grid points tested (up  to  6000 grid points, tlie largest 
number tested). 

T h e  maximurn numbers of grid points for compu- 
tational stability for the two equations are tabulated 
below: 

Equations I max(grid points) I m i n ( y )  
Burnett I 87 I n x  

I -.. ~~ 

A-Burnett I > 6000 1 < 0.01 

*9 The stability test showed that the conventional Bur- 
nett  equations are unstable to short-wavelength per- 
turbations; l!!e augmented Burnett equations stablize 
the Burnett equations in the numerical computations 
for shock wave structures. 

I t  is important to note that whereas the fuudamen- 
tal instability of the conventional Burnett equations 
could be circumvented by Fiscko in computations of 
one-dimensional shock structure at any altitude, i t  can- 
not be avoided in computations of the flow over a given 
body at altitudes above a certain height. Shock compo- 
tations are made with an  essentially constant Ax/A, 
somewhat greater than the minimum critical value for 
stability. Both the shock thickness and the meau-free- 
path A,, increase proportionally with increasing alti- 
tude, so that such computations apply to  any altitude 
no matter how high. For a body of fixed dimensions, 
however, the grid spacing Az for a required resolu- 
tion does not increase with altitude, but stays fixed; 
hence Ax/A, decreases steadily with increasing alti- 
tude, eventually becomes less than the minimum criti- 
cal value for stability at altitudes above a certain value. 
The inherent instability of the conventional Burnett 
equations must be overcome if practical computations 
are to be made at high altitudes. Therefore thc aug- 
mented Burnett equations are needed to overcome this 
difficulty. 

Shock Thickness Comparison 
We next computed the argon shock wave structure 

for hlacli numbers ranging from 1.59 to 50.0. The 
shock inverse density thickness of the augmentcd Bur- 
nett equations were compared with Fiscko's results of 
the conventional Burnett equations and the DSMC. 

Figure 5 shows the inverse density thickness of shock 
waves at  Mach numbers ranging from 1.59 to 50.0 for 
argon gas. The inverse density thickness of the aug- 
mented Burnett equations agrees well wit,h Fiscko's 
Burnett results. As pointed out by Fiscko, the re- 
sults of the Burnett equations are always closer to 
DShIC tliaii the Navier-Stokes equations. The results 
show that the augmented Burnett equations maintain 
the second order accuracy of the conventional Burnett 
equations for computing shock wave structure. 

k- 

G .  Flows Past Two-Dimensional Cy l inde r s  

We have extended the computations for the onc- 
dimensional shock wave structure to plaue-two- 
dimensional flows. The first problem was suprrsonic 
and hypersonic flows past cylindrical leading edges. Wc 
computed and compared the Navier-Stokes flow field 
with the Burnett flow field using the same set of sur- 
lace boundary conditions. At the same time, we tested 

k d  



the computational stability of both the conventional 
and augmented Burnett equations by computing them 
with progressively refined meshes 

The  TwwDimensional Governing Equations 
The  conservation equations for two-dimensional 

compressible flows with the rotational energy mode be- 
ing in equilibrium with the translational mode and the 
other internal modes being frozen are: 

*d 

au aF ac 
at ax ay 

- + - + - I o  

where 

(55) 

For air, y = 1.4, Pr = 0.72 and the viscosity coeffi- 
cient 11 was computed by the Sutherland relation. 

For simplicity, thermal reactions and vibrational en- 
ergy r e l aa t ion  are not considered in this investigation, 
since the Burnett terms affect only the contribution 
of the translational molecular energy to the nonlinear 
stress-strain tensor and heat-flux vector; and it is these 
terms which primarily determine the stability or insta- 
bility of the whole equation set. 

The Navier-Stokes equations, the conventional Bur- 
nett equations and the augmented Burnett equations 
were computed for each case in order to  compare one 
with the other. The  three equations are different only 
in their constitutive equations. The  constitutive equa, 
tions of the Navier-Stokes equations are given by Eq. 
(6) with n = 1; The  constitutive equations of the con- 
ventional Burnett equations are also given by Eq. (6) 
with n = 2; and those of the augmented Burnett equa- 
tions are given by Eq. (42). 

The Numerical Method 
Figure 6 shows a typical body-fitted computational 

mesh for the flows. The finite volume method was 
used in all the computations. In the figure, ( E , ? )  are 
the curvilinear computational coordinates, where the 
coordinates of the grid lines are F = 1,. . . , I L  and 
q =  1, . . . ,  J L .  

- 

In the computations, the governing equations and 
constitutive equations in Cartesian coordinate (z, y, t )  
were transformed into the curvilinear computational 
coordinates ( E ,  q ,  7). The  details of the transformation 
are not presented in this paper, except the trausfor- 
mation equations for the first, second and third deriva- 
tives appearing in the constitutive equations, which are 
given in the appendix. 

The implicit line Gauss-Seidel iteration method 
proposed by MacCormack for the Navier-Stokes 

was used t o  solve the Burnett equations as 
well as the Navier-Stokes equations. The inviscid terms 
were computed by the flux-splitting method and all 
the viscous terms were computed by central differenc- 
ing approximations. At each time step, the flow vari- 
ables along 7-grid lines were solved implicitly, which re- 
quired the solution of a pentadiagonal matrix equation 
simultaneously; while the &direction terms were com- 
puted by the line Gauss-Seidel iteration with alternat- 
ing sweeps in the backward and forward (-directions. 

The  Boundary Conditions 
Free stream conditions were specified along the top 

boundary ( q  = J Z ) .  Symmetry conditions were used 
along the stagnation streamline ( E  = 1). First-order ex- 
trapolation of the interior data  was used to  determined 
the flow variables along the exit boundary (( = IZ) 

For the boundary mesh points along the body surface 
(7 = I ) ,  the flows variables on the surface were com- 
puted by the first-order Maxwell/Smoluchowski[18' 
slip boundary conditions (Cartesian coordinates): 

and 

where 

The subscript s represents the flow variables on the sur- 
face and T, is the temperature of the surface body. Ti is 
the reflection coefficient and ?? is the accommodation 
coefficient. For this study, complete accommodation 
was assumed, i.e. , i7 = 1 and E = 1. 

In the case of the Burnett equations, evaluations of 
the second and third order derivatives were needed on 
the body surface. We used one-sided difference to  eval- 
uate these higher order derivatives on the surfaces. 

At the present stage of this research, the same slip 
boundary conditions were used for both the Navier- 
Stokes equations and the Burnett equations. The  ques- 
tion of which particular set of surface boundary con- 
ditions is the best, or the most appropriate, for the 
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Burnett equations is an  important one, bu t  is outside 
the scope of the present paper. 

solved the 
two-dimensional Burnett equations in 1976 for a hy- 
personic flow over a flat plate with sharp leading edge, 
which was the first two-dimensional attempt with these 
equations. Their computations were necessarily re- 
stricted to a coarse mesh because of computer limi- 
tations at that time. T h e  evenly spaced mesh sizes 
in their computations corresponded to Ax/A, = 4.8 
and Ay/X, = 1.9, which are larger than the minimum 
value Ax/Al = 0.8 for shock computation stability. 
Therefore, their computations may not have run into 
an instability problem because of the relatively coarse 
mesh used. It is also noted that they used different sur- 
face boundary conditions for Burnett (Scltamberg[211) 
than for Navier-Stokes (Maxwell/Smoluchowski [lD1), 

and obtained results for Burnett that appeared worse 
than for Navier-Stokes. In contrast, one-dimensional 
hypersonic shock struct,ure tests, which involve no un- 
certainty about boundary conditions, have shown the 
Burnett results t o  be much better than the Navier- 
Stokes. The reason for this apparent difference is not 
understood a t  present. It may or may riot he associated 
with boundary conditions. 

I t  was noted that Tannehill and 

Case I. ( Low Altitude, M, = 4.0) 
'Ihe flow conditions of the first case were the same 

as t,liose of the experiment.al test by ICim[221' [231 for 
supersonic air flow past a cylinder: 

M ,  = 4.0 
]<e ,  = 9.1 x lo4 { Kn-  = 0.67 x 

where 

pmll,r Re,  = - 
I'm 

and r is the radius of t,lie test cylinder. 
Since Kn, << 1.0, the flow belonged to the con- 

tinuum regime and therefore could be accurately de- 
scribed by the Navier-Stokes equations (except in the 
negligibly thin region within the how shock wave). The 
Burnett equations were expected to yield the same re- 
su l t ,~  as the Navier-Stokes equations. This case was also 
a test case for our newly written two-dimensional im- 
plicit computer code for the Navier-Stokes, the original 
Burnett equations and the augmented Burnett equa- 
tions. 

T h e  computational mesh for this case is shown in 
Figure 6 .  The mesh lines are aligned with the boundary 
surfaces and the predicted shock shape. 

Figure 7 shows the results for the shape of the bow 
shock wave. The experimental bow shock shape agrees 

well with the shape from the Navier-Stokes equations 
and from the Burnett equations. 

Figures 8 and 9 are the density and pressure dis- 
tributions along the stagnation streamline. The re- 
sults of the Navier-Stokes equations are compared with 
those from the Burnett equations with the same surface 
boundary conditions. T h e  results of the two equations 
are essentially the same except for slight differences in 
the small region within the  bow shock. This is because 
the strong compression across the shock increases the 
local Knudson number within the shock wave, hence 
the magnitudes of the Burnett t e r m  in the shock re- 
gion increase. 

Figures 10, 11,12 and 13 show the density and pres- 
sure contours for the Navier-Stokes equations and the 
Burnett equations. T h e  corresponding contours of the 
two sets of equat,ions agree well with each other. 

From these results, wesee that the Burnett equations 
give essentially the same results as the Navier-Stokrs 
equations at  low altitudes ( K n ,  << 1 ) .  

L/ 

We next computed the air flows of M ,  = 10.0 past 
a cylinder of radius T = 0.02 m. The computcd cases 
covered the whole continuum transitional regiinc Crom 
low altitudes to high altitudes as follows: 0 km (sea 
level), 65 km,  75 km., 80 km, 90 km and 9 5 k m  The 
corresponding free-stream Knudsen numbers were from 
3.3 x to 2.3. In this paper, we present t,he two 
typical cases: the flows at the altitudes of 75 km and 
90 km. ~ Y '  

Case 11. (Attitude = 75 km, MW = 10.0 ) 
The flow parameters for this case were 

Altitude = 75 km 
hf, = 10.0 
Kn- = 0.102 
Re, = 167.9 

r = 0.02 m 
T, = 1000.0 ' I <  

The Kundsen number increased from 0.67 x IO-" of 
Case I to Ii'n = 0.102 for this case, in which the flow 
begins to depart from the continuum regime and ent.ers 
the transitional regime. The Navier-Stokes equations 
become inaccurate and the Burnett solutions become 
different from the Navier-Stoka solutions. 

Figure 14 is the computational mesh of 40 x 62 grid 
points for this case. Because the shock wave thick- 
ness was a sizable part of the shock detachment dis- 
tance, the grid was evenly spaced along the stagnation 
streamline and the solid surface. 

Stability of the Burnett equations: The computa- 
tions for the conventional Burnett equations and the 
augmented Burnett equations were stable for this case 
with the 40 x 62 grid points mesh. The free-stream 
Kundsen number based on the minimum grid size was 
I<nAcw = 8.1. When we refined the mesh by in- 
creasing the number of grid points to 78 x 122 within 
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the same computational domain, the computations for 
the conventional Burnett equations became unstable, 
while the computations for the augmented Burnett 
equations remained stable. Therefore the approximate 
maximum Knaz for two-dimensional conventional 
Burnett equations computations to be stable is near 
Ii‘na,, = 8.1. T h e  computations in this case as 
well as those in the following cases showed that the 
augmented Burnett equations stablize the conventional 
Burnett equations in two dimensions. 

The Burnett Flow Field Compared with the Navier- 
Stokes Flow Fie ld  Figures 15, 16 and 17 are den- 
sit,y, velocity and temperature distributions along the 
stagnation streamline. In both figures, the results 
of tlie Navier-Stokes equations, the conventional Bur- 
nett equations and the augmented Burnett equations 
arc plotted on the same figures. T h e  difference be- 
trvcen the Burnett equations and Navier-Stokes equa- 
t.ions are evident, especially for the temperature dis- 
tribution across the shock. Meanwhile, the results of 
t.he aiigmcntcd Riirnett equations agree well with the 
conventional Burnett equations. Hence, the augmented 
I h r n c t t  equations do maintain tlie accuracy of the coii- 
veiitional Burnett equations when the solutions of the 
later eqnations are possible. 

1”igurcs 18, 19, 20 and 21 show the density and 
temperature contours for the Navier-Stokes equations 
and t,he Augmented Burnett equations. The two- 
dimensional augmenbed Burnett eqoat.ions result i n  a 
thicker bow shock wave. 

- 

- 
Casc 111. (Attitude = 90 km , M ,  = 10.0 ) 

/ /  I hr flow parameters for this case were: 

Altitude = 90 km 
M, = 10.0 

K n ,  = 1.185 
Re, = 14.9 

1’ = 0.02rn  I r, = 1000.0OK 

Thc  Kundsen number was 1.185 and thc flow w a s  
well into the continuum transitional regime in this case. 
The Navier-Stokes equations are inaccurate and the 
Burnett solutions become significantly different from 
the Navier-Stokes solutions. 

A computational mesh for this case was similar to 
Figure 14 with 40 x 142 grid points. T h e  minimum 
iriesh size was the same as tha t  of Figure 14. A larger 
computational domain was used because the bow shock 
wave stretched farther upstream for the large Kundsen 
number flow. 

Stability of the Burnett equations: The computa- 
tions for the Navier-Stokes and the augmented Bur- 
nett equations were stable, whereas the computations 
for conventional Burnett equations were unstable. The 
free-stream Kundsen number based on the minimum 

- 

grid size was Knmaz = 94.8. These results showed 
the augmented Burnett equations stablize the conven- 
tional Burnett equations in two dimensions, up to very 
high altitudes. 

The Burnett Flow Field Compared with the Navier- 
Stokes Flow Field Figures 22, 23 and 24 are density , 
velocity and temperature distributions along the stag- 
nation streamline. T h e  difference between the aug- 
mented Burnett equations and Navier-Stokes equations 
become significant in this case, especially for the tem- 
perature distribution across the shock. This may have 
a significant effect on properties sensitive to flow field 
details, such as radiation heating. 

Figures 25, 26, 27 and 28 show the density and 
temperature contours for the Navier-Stokes equations 
and the Augmented Burnett equations. The two- 
dimensional augmented Burnett equations result in 
much thicker how shock wave. 

7. 2D Hypersonic Flow Past a Double Ellipse 

In this section, we computed hypersonic M ,  = 25 
air flows past a double ellipse geometry i n  the tran- 
sitional regime. The same problem was computed hy 
Feierei~en[’~I using the particle simulation method of 
Baganoff. In Feiereisen’s computations, hard-sphere 
model and a rotational nonequilibrium model of COIL 
lision number 2 were used. We used the same ma& 
els to compute the flow and compared the results of 
the Navier-Stokes equations and the Burnett equations 
with Feiereisen’s. 

T h e  case had very low T, and a cold wall, therefore 
the vibrational mode of the air flow was assumed to be 
frozen and only translational and rotational noneqni- 
librium needed to be considered for this case. 

Though the Burnett equations were derived for the 
monatomic gas only, Lumpkin[”] demonstrated tha t  
the Burnett equations plus rotational noneqrrilihririm 
model provide satisfactory shock wave structure for a 
diatomic gas such as nitrogen. Therefore, we used the 
Burnett equations for both the viscous stress and trans- 
lational heat transfer and used first order equations for 
the rotational heat transfer. 

The Governing Equations 
The conservation equations for the two-dimensional 

flows with rotational nonequilibrium are: 

au aF ac 
at ax ay 
-+-+-=w 

where 



cu7 = R , 

uz + u2 
e = e ,  + p (c,tT + - ) >  2 

3R 
C", = - 

2 
and T is the translational temperature; T, is the ro- 
tational temperature. The  stress u,; and translational 
heat transfer qi are given in the preceding sections. 

The  rotational heat flux terms q?, are as follows: 

(59)  

where the rotational heat conductivity tiF and trans- 
lational heat conductivity K for diatomic gases are ap- 
proximated by the Eucken's relation[25]: 

Like the particle simulation by Feiereisen, we used 
hard-sphere gas model in the computations. The vis- 
cosity for hard-sphere gas is: 

The  following rotational relaxation model was used 
in the computations: 

with 
T P  

rc = P 

and 

z R = 2  

where the rotation collision number ZR was the s a m e ' 4  
as in the particle simulation. 

The Numerical Method and Boundary Conditions 
The  same numerical method and boundary condi- 

tions as in Section 6 were used in the computations, 
with slightly different surface-slip boundary conditions 
because of the rotational nonequilibrium. The  first- 
order Maxwell/Smoluchowski slip boundary conditions 
were extended to rotational nonequilibrium[181 as fol- 
lows (Cartesian coordinates): 

(63) 
2 - 8 -  au 3 p aT 

us = -((-)+--(-) 
ii ay  4 p~ ax 

where 

In the computations, complete accommodation surface 
was assumed, Le., 7 = 1 and i3 = 1, which were the 
same as in the particle simulation. 

Case IV. : Double Ellipse Flow ( A4, = 25.0. 
Anele of Attack = 30") ~~ - 

The flow conditions of the case were: 

I Nose Radius = 0.00375 m 

M ,  = 25.0 
Kn, = 0.28 

Angle of Attack = 30" 
A, = 1.05 x 10-3nL 
T, = 13.5'K 
T, = 620.OaK 

Figure 29 shows the body-fitted computational grid 
of 68 x 62 grid points for the double ellipse geometry. 

Stability of the Burnett equations: The computa- 
tions for the Navier-Stokes and the augmented Bur- 
nett equations were stable, while the computations for 
conventional Burnett equations were unstable. These 
results again showed tha t  the augmented Burnett e q u a  
tions stablize the conventional Burnett equations in 
two dimensions. 

The Burnett Flow Field and the Navier-Stokes Flow 
Field Compared with the Particle Simulation: Figures 
30, 31 and 32 are density, velocity and translational '4 
temperature distributions along the stagnation line. 
T h e  results are compared with the particle simulation 



results. In both figures, the results of the augmented 
Burnett equations agree better with those of the par- 
ticle simulation than those of the Navier-Stokes equa- 
tions. The results indicate the Burnett equations to  
be more accurate than the Navier-Stokes equations. I t  
should be pointed out tha t  the difference between the 
Navier Stokes flow field and the Burnett flow field is 
not large because the Kundsen number of the flow was 
about 0.28 and the artificial hard-sphere model w a s  
used in the computations. Still the tw-dimensional 
augmented Burnett equations result in a thicker bow 
shock wave and agree very well with the particle sim- 
ulation results. 

Figures 33 shows the rotational and translational 
temperature along the stagnation line. The rotational 
temperature lags behind the translational temperature 
across the shock wave. 

Figurcs 34,35, 3G and 37 are the density and t ransla  
tional t,emperature contours for the case. The density 
contonrs of the augmented Burnett  equations and the 
Fciereisen’s resnlts are plott,cd together for comparison. 
The figures show the density and temperature contours 
for t,he Augment,ed Brirnet,t equat,ions agree well with 
the particle simulation results. 

, . ~  

..- 

8. Conchisions 

A new set of equations termed the “augmented Bur- 
net,t equations” has been developed which overcome 
the instability of the conventional Burnett equations 
to small wavelength perturbations. We have computed 
both I D  shock wave structures and 2D flows past blunt 
leading edges using the new equations. The analytical 
analysis and numerical test cases liave demonstrated 
the following properties of the new equations: 

“ 

1. The augmented Burnett equations are always sta- 
ble in t h r  theoretical analysis as well as in both the 
I D  and 2 0  numerical computation tests produced 
t,O datc. 

2. ’rhe new equations maintain the same accuracy as 
the convcntional nurnctt  equations. 

3 .  At low altitudes ( l i n  5 0.1 ), the difference be- 
tween the 2D computatiotial results of the Burnett 
equations and those of t,lie Navier-Stokes equations 
is small. 

4. At high altitudes (Kn  2 O(1) ), the difference bc. 
twecii the 2D computational results ( especially T 
) of the Burnett equations and those of the Navier- 
Stokes equations is significant, which makes it 
preferable to  use the Burnett equations instead of 
the Navier-Stokes equations in this regime. Bur- 
nett CFD appears to  he especially important for 
predicring aerodynamic parameters sensitive to 
flow-fieid details, such as radiation. 

-, 

5. Computation times with the Burnett equations are 
only modestly greater than Navier-Stokes with the 
same grid system; T h e  Burnett solutions required 
about 4C-percent more CPU time than Navier- 
Stokes for both the 1D and 2D flows investigated. 
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10. Appendix 

Tlie Derivative Transformation Equations 
The equations of the grid transformation are: 

2 = Z ( t , % T )  

Y = Y K > % T )  
t = r  

The transformation equations for the derivat,ives from 
curvilinear coordinates (<, q> r )  to  Cartesian coordi- 
nates ( t , y , t )  can be derived by the chain rules. 

The first-order derivative transformation equations 
are: 

where 

a =  Y r l  J 
6 = - y c j J  
c = -xr/J 
d = x c / J  i J = X C Y ~ - X ~ Y C  

The second-order derivative transformation equa- 
tions are: 
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where the coefficients such as a2 and dv can he com- 
puted by Eq. ( 6 7 )  and (68).  

The third-order derivative transformation equations 
are 

a3  a3 
a x 3  a ~ 3  
- = a  -+3a2b-  

a 3  a3  -- - a2c - + (2abc + a 2 d )  - a 3  

a X v y  a t 3  a m 7 +  
a3 + a3 

a03 a tw  b2d - + (b2c + 2abd) - 

(73) 

a3  a 3  c2a - + (2acd + bc’) - a3 -- a x w  - a t 3  a m q +  . .  

a3 + a3 
bd2 - + (ad2  + 2cdb) - 

803 ata02 

a a + dz, - 
80 

(74) 

a3 + a 3  a 3  

ay3 at3 a m 7  
a3  a3 

a1?3 ataOZ + 

a 2  a 2  

y a t 2  a q 2  

a a 
CYY - + dYY 5 at 

- = c3 - + 3c2d - 

d3 - + 3cdZ - 

3 c c  - + 3 d d  - + 

3 ( c d y  + d c  ) - a2 i a m  
( 7 5 )  

where the coefficients such as arz, cCy and d,, can be 
computed by Eq. (69), (70 )  and ( 7 1 ) .  
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Figure 1: Xaxwellian gas characteristic trajectories for 
flows in both one and two dimensions. The arrows show 
the direction in decreasing wavelength. 
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Figure 2: Maxwellian gas characteristic trajectories for 
the super Burnett equations. The  arrows show the di- 
rection in decreasing wavelength. 
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Figure 3: Maxwellian gas characteristic trajectories for 
the augmented Burnett equations in both one and two 
dimensions. The  arrows show the direction in decreas- 
ing wavelength. 
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Figure 7: The bow shock shape for Case I: Mw = 4.0 
K ~ ,  = 0.67 10-4. 
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Figure 4: Shock temperature profile in Fiscko’s compu- 
tations of the Burnett equations when the instability 
started. ( Maxwellian gas M = 8 ) 
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Figure 8: Density along stagnation streamline for Case 
I: M ,  = 4.0, Kn, = 0.67 x 
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Figure 5 :  Argon shock wave inverse density thickness. 
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Figure 6: Computational mesh for Case I: M ,  = 4.0, 
Kn, = 0.67 x 
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Figure 9: Pressure along stagnation streamline for Case 
I: M ,  = 4.0, ICn, = 0.67 x W 
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Figure 10: Yavier-Stokes normalized density contours 
for Case 1: .%.I, = 4.0, Kn, = 0.67 x 
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Figure 11: Burnett normalized density contours for 
Case I: M, 4.0, Kn, = 0.67 x 
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Figure 12: Navier-Stokes pressure contours for Case I: 
A4, = 4.0, Iin, = 0.67 x lo-*. 

Figure 13: Burnett pressure contours for Case I: M ,  = 
4.0, Kn, = 0.67 x 
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Figure 14: Computational mesh for Case 11: ?d, = 10, 
Iin, = 0.1 and Altitude = 75 km. 
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Figure 15: Density along stagnation streamline for 
Case 11: M ,  = 10, Kn, = 0.1 and Altitude = 75 km. 
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Figure 16: Velocity along stagnation streamline for 
Case 11: ?.I, = 10, K n ,  = 0.1 and Altitude = 75 km. 
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Figure 17: Temperature along stagnation streamline 
for Case 11. M ,  = 10, K n ,  = 0 1 and Altitude = 
75 km. 
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Figure 18: Navier-Stokes density contours for Case 11: 
M ,  = 10, Kn, = 0.1 and Altitude = 75 km. 
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Figure 19: Augmented Burnett density contours for 
Case 11: .M, = 10, Kn, = 0.1 and Altitude = 75 km. 

Figure 20: Navier-Stokes temperature contours for 
Case 11: M ,  = 10, Kn, = 0.1 and Altitude = 7 5 h .  
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Figure 21: Augmented Burnett temperature contours 
for Case 11: M ,  = 10, Kn, = 0.1 and Altitude = 
75 km. W 
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Figure 23: Velocity along stagnation streamline for 
Case 111: :If, = 10, Iin, = 1.2 and Altitude = 90 km. 
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Figure 24: Temperature along stagnation streamline 
for Case 111: 34, = 10, Iin, = 1.2 and Altitude = 
90 km. 
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Figure 25: Navier-Stokes density contours for Case 111: 
M ,  = 10, tin, = 1.2 and Altitude = 90 km. 

Figure 26: .4ugmented Burnett density contours for 
Case 111: M ,  = 10, t in,  = 1.2 and Altitude = 90 km.  
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Figure 27: Xavier-Stokes temperature contours for 
Case 111: M ,  = 10, Iin, = 1.2 and Altitude = 90 km. 
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Figure 32: Translational temperature along stagnation 
streamline for Case IV: M ,  = 25, Angle of Attack = 
30' and A, = i.05 x 

Figure 29: Computational Mesh for Case IV: M, = 
~ 25, Angle of Attack = 30" and A, = 1.05 x 
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Figure 30: Density along stagnation streamline for Figure 33: The rotationa! and translational tempera- 
Case IV: M ,  = 25, Angle of Attack = 30' and ture along stagnation streamline for Case IV: M ,  = 
A, = 1.05 10-3. 25, Angle of Attack = 30" and A, = 1.05 x 10W3 .v* 
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Figure 3 5 :  Augmented Burnett translational tem- 
perature contours for Case IV: M ,  = 25, 
Angle of Attack = 30' and A, = 1.05 x 10W3. 

Feiereisen for Case IV: M ,  = 25, Angle of Attack = 
30" and A, = 1.05 x 

Figure 37: Particle simulation translational tempera- 
ture contours by Feiereisen for Case IV: M ,  = 25, 
Angle of Attack = 30' and A, = 1.05 x 
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